Precise asymptotics for Levy processes

被引:1
|
作者
Hu, Zhi Shui [1 ]
Su, Chun [1 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Peoples R China
关键词
precise asymptotic; Levy process; stable process; Fuk-Nagaev type inequality;
D O I
10.1007/s10114-005-0868-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {X(t), t >= 0} be a Levy process with EX(1) = 0 and EX2(1) < infinity. In this paper, we shall give two precise asymptotic theorems for {X(t), t >= 0}. By the way, we prove the corresponding conclusions for strictly stable processes and a general precise asymptotic proposition for sums of i.i.d. random variables.
引用
收藏
页码:1265 / 1270
页数:6
相关论文
共 50 条
  • [1] Tail asymptotics for exponential functionals of Levy processes
    Maulik, K
    Zwart, B
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (02) : 156 - 177
  • [2] Uniform Asymptotics of Ruin Probabilities for Levy Processes
    Kelbert, M.
    Sazonov, I.
    Avram, F.
    MARKOV PROCESSES AND RELATED FIELDS, 2012, 18 (04) : 681 - 692
  • [3] Precise Asymptotics for Lévy Processes
    Zhi Shui Hu
    Chun Su
    Acta Mathematica Sinica, English Series, 2007, 23 : 1265 - 1270
  • [4] Precise Asymptotics for Lévy Processes
    Zhi Shui HU
    Chun SU
    Acta Mathematica Sinica,English Series, 2007, 23 (07) : 1265 - 1270
  • [5] Small-time moment asymptotics for Levy processes
    Figueroa-Lopez, Jose E.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (18) : 3355 - 3365
  • [6] ASYMPTOTICS FOR THE FIRST PASSAGE TIMES OF LEVY PROCESSES AND RANDOM WALKS
    Denisov, Denis
    Shneer, Vsevolod
    JOURNAL OF APPLIED PROBABILITY, 2013, 50 (01) : 64 - 84
  • [7] QUENCHED ASYMPTOTICS FOR SYMMETRIC LEVY PROCESSES INTERACTING WITH POISSONIAN FIELDS
    Chen, Zhi-He
    Wang, Han
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2022, 42 (02): : 319 - 356
  • [8] Precise Asymptotic Approximations for Kernels Corresponding to Levy Processes
    Jo, Sihun
    Yang, Minsuk
    POTENTIAL ANALYSIS, 2014, 40 (03) : 203 - 230
  • [9] ASYMPTOTICS FOR EXPONENTIAL LEVY PROCESSES AND THEIR VOLATILITY SMILE: SURVEY AND NEW RESULTS
    Andersen, Leif
    Lipton, Alexander
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2013, 16 (01)
  • [10] ASYMPTOTICS FOR A BIDIMENSIONAL RISK MODEL WITH TWO GEOMETRIC LEVY PRICE PROCESSES
    Yang, Yang
    Wang, Kaiyong
    Liu, Jiajun
    Zhang, Zhimin
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (02) : 481 - 505