A comparison of machine learning methods for predicting the compressive strength of field-placed concrete

被引:103
|
作者
DeRousseau, M. A. [1 ]
Laftchiev, E. [3 ]
Kasprzyk, J. R. [1 ]
Rajagopalan, B. [1 ,2 ]
Srubar, W. V., III [1 ]
机构
[1] Univ Colorado, Dept Civil Environm & Architectural Engn, ECOT 441,UCB 428, Boulder, CO 80309 USA
[2] Univ Colorado, CIRES, 216 UCB, Boulder, CO 80309 USA
[3] Mitsubishi Elect Res Labs, 201 Broadway FL8, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Concrete; Compressive strength; Machine learning; Prediction; Statistical modeling; FLY-ASH; NEURAL-NETWORKS; SILICA FUME; SLAG; OPTIMIZATION; METAKAOLIN; REGRESSION;
D O I
10.1016/j.conbuildmat.2019.08.042
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study evaluates the efficacy of machine learning (ML) methods to predict the compressive strength of field-placed concrete. We employ both field- and laboratory-obtained data to train and test ML models of increasing complexity to determine the best-performing model specific to field-placed concrete. The ability of ML models trained on laboratory data to predict the compressive strength of field-placed concrete is evaluated and compared to those models trained exclusively on field-acquired data. Results substantiate that the random forest ML model trained on field-acquired data exhibits the best performance for predicting the compressive strength of field-placed concrete; the RMSE, MAE, and R-2 values were 730 psi, 530 psi, and 0.51, respectively. We also show that hybridization of field- and laboratory-acquired data for training ML models is a promising method for reducing common over-prediction issues encountered by laboratory-trained models that are used in isolation to predict the compressive strength of field-placed concrete. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Comparison of Machine Learning Approaches with Traditional Methods for Predicting the Compressive Strength of Rice Husk Ash Concrete
    Amin, Muhammad Nasir
    Iqtidar, Ammar
    Khan, Kaffayatullah
    Javed, Muhammad Faisal
    Shalabi, Faisal, I
    Qadir, Muhammad Ghulam
    CRYSTALS, 2021, 11 (07)
  • [2] Predicting the Compressive Strength and the Effective Porosity of Pervious Concrete Using Machine Learning Methods
    Ba-Anh Le
    Viet-Hung Vu
    Soo-Yeon Seo
    Bao-Viet Tran
    Tuan Nguyen-Sy
    Minh-Cuong Le
    Thai-Son Vu
    KSCE Journal of Civil Engineering, 2022, 26 : 4664 - 4679
  • [3] Predicting the Compressive Strength and the Effective Porosity of Pervious Concrete Using Machine Learning Methods
    Ba-Anh Le
    Viet-Hung Vu
    Seo, Soo-Yeon
    Bao-Viet Tran
    Tuan Nguyen-Sy
    Minh-Cuong Le
    Thai-Son Vu
    KSCE JOURNAL OF CIVIL ENGINEERING, 2022, 26 (11) : 4664 - 4679
  • [4] Predicting compressive strength of geopolymer concrete using machine learning
    Gupta, Priyanka
    Gupta, Nakul
    Saxena, Kuldeep K. K.
    INNOVATION AND EMERGING TECHNOLOGIES, 2023, 10
  • [5] Comparison of artificial intelligence methods for predicting compressive strength of concrete
    Cihan, Mehmet Timur
    GRADEVINAR, 2021, 73 (06): : 617 - 632
  • [6] Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods
    Cihan, M. Timur
    ADVANCES IN CIVIL ENGINEERING, 2019, 2019
  • [7] Machine learning based models for predicting compressive strength of geopolymer concrete
    Le, Quang-Huy
    Nguyen, Duy-Hung
    Sang-To, Thanh
    Khatir, Samir
    Le-Minh, Hoang
    Gandomi, Amir H.
    Cuong-Le, Thanh
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2024, 18 (07) : 1028 - 1049
  • [8] Comparison of machine learning techniques to predict compressive strength of concrete
    Dutta, Susom
    Samui, Pijush
    Kim, Dookie
    COMPUTERS AND CONCRETE, 2018, 21 (04): : 463 - 470
  • [9] Comparison of Machine Learning Techniques for the Prediction of Compressive Strength of Concrete
    Chopra, Palika
    Sharma, Rajendra Kumar
    Kumar, Maneek
    Chopra, Tanuj
    ADVANCES IN CIVIL ENGINEERING, 2018, 2018
  • [10] Predicting compressive strength of geopolymer concrete using machine learning models
    Swapnil Deepak Kurhade
    Subhash Patankar
    Innovative Infrastructure Solutions, 2025, 10 (1)