Adaptive estimation of the copula correlation matrix for semiparametric elliptical copulas

被引:27
|
作者
Wegkamp, Marten [1 ,2 ]
Zhao, Yue [2 ]
机构
[1] Cornell Univ, Dept Math, White Hall, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
correlation matrix; elliptical copula; factor model; Kendall's tau; nuclear norm regularization; oracle inequality; primal-dual certificate; OPTIMAL RATES; COVARIANCE; DEPENDENCE; DECOMPOSITION; CONVERGENCE; SELECTION;
D O I
10.3150/14-BEJ690
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the adaptive estimation of copula correlation matrix Sigma for the semi-parametric elliptical copula model. In this context, the correlations are connected to Kendall's tau through a sine function transformation. Hence, a natural estimate for Sigma is the plug-in estimator (Sigma) over cap with Kendall's tau statistic. We first obtain a sharp bound on the operator norm of (Sigma) over cap - Sigma. Then we study a factor model of Sigma, for which we propose a refined estimator (Sigma) over tilde by fitting a low-rank matrix plus a diagonal matrix to (Sigma) over cap using least squares with a nuclear norm penalty on the low-rank matrix. The bound on the operator norm of (Sigma) over cap - Sigma serves to scale the penalty term, and we obtain finite sample oracle inequalities for (Sigma) over tilde. We also consider an elementary factor copula model of Sigma, for which we propose closed-form estimators. All of our estimation procedures are entirely data-driven.
引用
收藏
页码:1184 / 1226
页数:43
相关论文
共 50 条
  • [1] Optimal estimation of sparse correlation matrices of semiparametric Gaussian copulas
    Xue, Lingzhou
    Zou, Hui
    [J]. STATISTICS AND ITS INTERFACE, 2014, 7 (02) : 201 - 209
  • [2] Semiparametric estimation of conditional copulas
    Abegaz, Fentaw
    Gijbels, Irene
    Veraverbeke, Noel
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 110 : 43 - 73
  • [3] Semiparametric estimation in copula models
    Tsukahara, H
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (03): : 357 - 375
  • [4] SEMIPARAMETRIC ESTIMATION OF THE PARAMETERS OF MULTIVARIATE COPULAS
    Liebscher, Eckhard
    [J]. KYBERNETIKA, 2009, 45 (06) : 972 - 991
  • [5] Semiparametric Estimation in Copulas with the Same Marginals
    Berred, Alexandre
    Malov, Sergey V.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (03) : 372 - 392
  • [6] On copula-based collective risk models: from elliptical copulas to vine copulas
    Oh, Rosy
    Ahn, Jae Youn
    Lee, Woojoo
    [J]. SCANDINAVIAN ACTUARIAL JOURNAL, 2021, 2021 (01) : 1 - 33
  • [7] Canonical correlation analysis for elliptical copulas
    Langworthy, Benjamin W.
    Stephens, Rebecca L.
    Gilmore, John H.
    Fine, Jason P.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 183
  • [8] Tails of correlation mixtures of elliptical copulas
    Manner, Hans
    Segers, Johan
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2011, 48 (01): : 153 - 160
  • [9] Estimation procedures for a semiparametric family of bivariate copulas
    Amblard, C
    Girard, S
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (02) : 363 - 377
  • [10] Erratum to "Semiparametric estimation in copula models"
    Tsukahara, Hideatsu
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (04): : 734 - 735