A note on the controllability of higher-order linear systems

被引:10
|
作者
Kalogeropoulos, G
Psarrakos, P
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] Univ Athens, Dept Math, Athens 15784, Greece
关键词
companion matrix; compound matrix; closed loop system; eigenvalue; input vector; matrix polynomial; state;
D O I
10.1016/j.am1.2003.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new condition for the controllability of higher-order linear dynamical systems is obtained. The suggested test contains rank conditions of suitably defined matrices and is based on the notion of compound matrices and the Binet-Cauchy formula. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1375 / 1380
页数:6
相关论文
共 50 条
  • [1] Controllability of Higher-Order Linear Systems with Multiple Delays in Control
    Klamka, Jerzy
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-3, 2009, : 1158 - 1162
  • [2] A Note on Relative Controllability of Higher Order Linear Delayed Discrete Systems
    Diblik, Josef
    Mencakova, Kristyna
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (12) : 5472 - 5479
  • [3] Controllability and Stabilizability of Higher-Order Nonholonomic Systems
    Rubio Hervas, Jaime
    Reyhanoglu, Mahmut
    [J]. 2013 9TH ASIAN CONTROL CONFERENCE (ASCC), 2013,
  • [5] Controllability of higher-order networks
    Ma, Weiyuan
    Bao, Xionggai
    Ma, Chenjun
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 653
  • [6] Higher-order linear lossless systems
    Rao, S.
    Rapisarda, P.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2008, 81 (10) : 1519 - 1536
  • [7] Controllability and stabilizability of a class of systems with higher-order nonholonomic constraints
    Hervas, Jaime Rubio
    Reyhanoglu, Mahmut
    [J]. AUTOMATICA, 2015, 54 : 229 - 234
  • [8] HIGHER-ORDER CONDITIONS FOR CONICAL CONTROLLABILITY
    WARGA, J
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (06) : 1471 - 1480
  • [9] SOLVING A HIGHER-ORDER LINEAR DISCRETE SYSTEMS
    Diblik, J.
    Mencakova, K.
    [J]. MATHEMATICS, INFORMATION TECHNOLOGIES AND APPLIED SCIENCES 2017, 2017, : 77 - 91
  • [10] On higher-order singular discrete linear systems
    Kalogeropoulos, GI
    Papachristopoulos, DP
    [J]. PROCEEDINGS OF THE 25TH IASTED INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION, AND CONTROL, 2006, : 61 - +