Research on Prediction Method of Gear Pump Remaining Useful Life Based on DCAE and Bi-LSTM

被引:13
|
作者
Wang, Chenyang [1 ,2 ]
Jiang, Wanlu [1 ,2 ]
Yue, Yi [1 ,2 ]
Zhang, Shuqing [3 ]
机构
[1] Yanshan Univ, Hebei Prov Key Lab Heavy Machinery Fluid Power Tr, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, Key Lab Adv Forging & Stamping Technol & Sci, Minist Educ China, Qinhuangdao 066004, Hebei, Peoples R China
[3] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 06期
基金
中国国家自然科学基金;
关键词
gear pump; RUL; DCAE; Bi-LSTM; health indicator; FAULT-DIAGNOSIS; NEURAL-NETWORK;
D O I
10.3390/sym14061111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As a hydraulic pump is the power source of a hydraulic system, predicting its remaining useful life (RUL) can effectively improve the operating efficiency of the hydraulic system and reduce the incidence of failure. This paper presents a scheme for predicting the RUL of a hydraulic pump (gear pump) through a combination of a deep convolutional autoencoder (DCAE) and a bidirectional long short-term memory (Bi-LSTM) network. The vibration data were characterized by the DCAE, and a health indicator (HI) was constructed and modeled to determine the degradation state of the gear pump. The DCAE is a typical symmetric neural network, which can effectively extract characteristics from the data by using the symmetry of the encoding network and decoding network. After processing the original vibration data segment, health indicators were entered as a label into the RUL prediction model based on the Bi-LSTM network, and model training was carried out to achieve the RUL prediction of the gear pump. To verify the validity of the methodology, a gear pump accelerated life experiment was carried out, and whole life cycle data were obtained for method validation. The results show that the constructed HI can effectively characterize the degenerative state of the gear pump, and the proposed RUL prediction method can effectively predict the degeneration trend of the gear pump.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Bi-LSTM neural network for remaining useful life prediction of bearings
    Shen, Yan-Bin
    Zhang, Xiao-Li
    Xia, Yong
    Yang, Ji
    Chen, Shuang-Da
    [J]. Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2021, 34 (02): : 411 - 420
  • [2] REMAINING USEFUL LIFE PREDICTION OF AIRCRAFT ENGINE BASED ON BI-LSTM NETWORK INTEGRATED WITH ATTENTION MECHANISM
    Qu, Guixian
    Qiu, Tian
    Ding, Shuiting
    Ma, Long
    Yuan, Qiyu
    Ma, Qinglin
    Si, Yang
    [J]. PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 1, 2024,
  • [3] Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing
    Dong, Shaojiang
    Xiao, Jiafeng
    Hu, Xiaolin
    Fang, Nengwei
    Liu, Lanhui
    Yao, Jinbao
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [4] Remaining useful life prediction of rolling bearing based on multi-head attention embedded Bi-LSTM network
    Shen, Yizhe
    Tang, Baoping
    Li, Biao
    Tan, Qian
    Wu, Yanling
    [J]. MEASUREMENT, 2022, 202
  • [5] Research on Prediction Method of Hydraulic Pump Remaining Useful Life Based on KPCA and JITL
    Li, Zhenbao
    Jiang, Wanlu
    Zhang, Sheng
    Xue, Decai
    Zhang, Shuqing
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [6] Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction
    Jiahang Luo
    Xu Zhang
    [J]. Applied Intelligence, 2022, 52 : 1076 - 1091
  • [7] Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction
    Luo, Jiahang
    Zhang, Xu
    [J]. APPLIED INTELLIGENCE, 2022, 52 (01) : 1076 - 1091
  • [8] Remaining Useful Life Prediction Based on a Bi-directional LSTM Neural Network
    Pan, Zhen
    Xu, Zhao
    Wang, Hongye
    Chi, Chengzhi
    [J]. 2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 985 - 990
  • [9] Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification
    Yang, Jinsong
    Peng, Yizhen
    Xie, Jingsong
    Wang, Pengxi
    [J]. SENSORS, 2022, 22 (12)
  • [10] An Improved PF Remaining Useful Life Prediction Method Based on Quantum Genetics and LSTM
    Ge, Yang
    Sun, Lining
    Ma, Jiaxin
    [J]. IEEE ACCESS, 2019, 7 : 160241 - 160247