Efficient Event-based Intrusion Monitoring using Probabilistic Distributions

被引:1
|
作者
Ganan, F. J. [1 ]
Sanchez-Diaz, J. A. [1 ]
Tapia, R. [1 ]
Martinez-de Dios, J. R. [1 ]
Ollero, A. [1 ]
机构
[1] Univ Seville, GRVC Robot Lab, Seville, Spain
关键词
surveillance; intrusion monitoring; event camera; aerial robots;
D O I
10.1109/SSRR56537.2022.10018655
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Autonomous intrusion monitoring in unstructured complex scenarios using aerial robots requires perception systems capable to deal with problems such as motion blur or changing lighting conditions, among others. Event cameras are neuromorphic sensors that capture per-pixel illumination changes, providing low latency and high dynamic range. This paper presents an efficient event-based processing scheme for intrusion detection and tracking onboard strict resource-constrained robots. The method tracks moving objects using a probabilistic distribution that is updated event by event, but the processing of each event involves few low-cost operations, enabling online execution on resource-constrained onboard computers. The method has been experimentally validated in several real scenarios under different lighting conditions, evidencing its accurate performance.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 50 条
  • [1] Event-based surveillance system for efficient monitoring
    Jung, DJ
    Park, SH
    Kim, HJ
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2004, PT 2, PROCEEDINGS, 2004, 3332 : 641 - 648
  • [2] Asynchronous event-based clustering and tracking for intrusion monitoring in UAS
    Rodriguez-Gomez, J. P.
    Gomez Eguiluz, A.
    Martinez-de Dios, J. R.
    Ollero, A.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 8518 - 8524
  • [3] Event-based Multitrack Alignment using a Probabilistic Framework
    Robertson, A.
    Plumbley, M. D.
    [J]. JOURNAL OF NEW MUSIC RESEARCH, 2015, 44 (02) : 71 - 82
  • [4] Auto-Tuned Event-Based Perception Scheme for Intrusion Monitoring With UAS
    Pablo Rodriguez-Gomez, Juan
    Gomez Eguiluz, Augusto
    Ramiro Martinez-De Dios, Jose
    Ollero, Anibal
    [J]. IEEE ACCESS, 2021, 9 : 44840 - 44854
  • [5] Event-based process monitoring
    Sarrate, R.
    Aguilar, J.
    Nejjari, F.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2007, 20 (08) : 1152 - 1162
  • [6] Event-Based Probabilistic Embedding for POI Recommendation
    Zhang, Tiancheng
    Liu, Hengyu
    Geng, Xue
    Yu, Ge
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [7] Event-Based Media Enrichment Using an Adaptive Probabilistic Hypergraph Model
    Liu, Xueliang
    Wang, Meng
    Yin, Bao-Cai
    Huet, Benoit
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (11) : 2461 - 2471
  • [8] Sequential pattern analysis for event-based intrusion detection
    Nisha, T.N.
    Pramod, Dhanya
    [J]. International Journal of Information and Computer Security, 2019, 11 (4-5) : 476 - 492
  • [9] An Event-Based Bus Monitoring System
    Antoniou, Antonis
    Georgiou, Andreas
    Kolios, Panayiotis
    Panayiotou, Christos
    Ellinas, Georgios
    [J]. 2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 2882 - 2887
  • [10] A Probabilistic Formalization of the Appraisal for the OCC Event-Based Emotions
    Gluz, Joao
    Jaques, Patricia A.
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2017, 58 : 627 - 664