SHARPLY LOCAL POINTWISE A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

被引:8
|
作者
Demlow, Alan [1 ]
Makridakis, Charalambos [2 ,3 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] Univ Crete, Dept Appl Math, GR-71409 Iraklion, Greece
[3] Fdn Res & Technol Hellas, Inst Appl & Computat Math, GR-71110 Iraklion, Greece
基金
美国国家科学基金会;
关键词
Parabolic partial differential equations; finite element methods; adaptive methods; a posteriori error estimates; pointwise error estimates; maximum norm error estimates; localized error estimates; local error estimates; FINITE-ELEMENT INTERPOLATION; MAXIMUM-NORM; APPROXIMATION; GRADIENTS;
D O I
10.1090/S0025-5718-10-02346-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove pointwise a posteriori error estimates for semi- and fully-discrete finite element methods for approximating the solution u to a parabolic model problem. Our estimates may be used to bound the finite element error parallel to u - u(h)parallel to (L infinity) ((D)), where D is an arbitrary subset of the space-time domain of the definition of the given PDE. In contrast to standard global error estimates, these estimators de-emphasize spatial error contributions from space-time regions removed from D. Our results are valid on arbitrary shape-regular simplicial meshes which may change in time, and also provide insight into the contribution of mesh change to local errors. When implemented in an adaptive method, these estimates require only enough spatial mesh refinement away from D in order to ensure that local solution quality is not polluted by global effects.
引用
收藏
页码:1233 / 1262
页数:30
相关论文
共 50 条