Solubility of Caffeine in Supercritical CO2: A Molecular Dynamics Simulation Study

被引:11
|
作者
Reddy, Vishwanath [1 ]
Saharay, Moumita [1 ]
机构
[1] Osmania Univ, Univ Coll Sci, Dept Phys, Hyderabad 500007, Telangana, India
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2019年 / 123卷 / 45期
关键词
CARBON-DIOXIDE; NEUTRON-SCATTERING; AQUEOUS-SOLUTION; SOFT DRINKS; TEA; EXTRACTION; COFFEE; AGGREGATION; TEMPERATURE; THEOBROMINE;
D O I
10.1021/acs.jpcb.9b08351
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The extraction of caffeine from green tea leaves and cocoa beans is a common industrial process for the production of decaffeinated beverages and pharmaceuticals. The choice of the solvent critically determines the yield of this extraction process. Being an environmentally benign and recyclable solvent, supercritical carbon dioxide (scCO(2)) has emerged as the most desirable green solvent for caffeine extraction. The present study investigates the solvation properties of caffeine in scCO(2) at two different temperatures (318 and 350 K) using molecular dynamics simulations. Unlike in water, the caffeine molecules in scCO(2) do not aggregate to form clusters due to relatively stronger caffeine-CO2 interactions. A well-structured scCO(2) solvent shell envelops each caffeine molecule as a result of strong electron-donor-acceptor (EDA) and hydrogen-bonding interactions between these two species. Upon heating, although marginal site-specific changes in the distribution of nearest CO2 around caffeine are observed, the overall distribution is retained. At a higher temperature, the caffeine-CO2 hydrogen-bonding interactions are weakened, while their EDA interactions become relatively stronger. The results underscore the importance of the interplay of these interactions in determining stable solvent structures and solubility of caffeine in scCO(2).
引用
收藏
页码:9685 / 9691
页数:7
相关论文
共 50 条
  • [1] Calculation of solubility parameters of supercritical CO2 by molecular dynamics simulation
    Luo, Hui
    Wang, Rui
    Fan, Weiyu
    Li, Zhaomin
    Ma, Tao
    Nan, Guozhi
    [J]. Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31 (01): : 78 - 83
  • [2] Solubility of caffeine in the supercritical CO2–methanol binary solvent
    V. A. Golubev
    M. Yu. Nikiforov
    G. A. Alper
    [J]. Russian Journal of Physical Chemistry B, 2015, 9 : 1054 - 1058
  • [3] Molecular dynamics simulation of solubility of C.I. Disperse Brown 19 in supercritical CO2 and water
    Wang, Chunyi
    Wu, Wei
    Wang, Jian
    Xu, Hong
    Mao, Zhiping
    [J]. Fangzhi Xuebao/Journal of Textile Research, 2020, 41 (09): : 95 - 101
  • [4] β-Diketones at Water/Supercritical CO2 Interface: A Molecular Dynamics Simulation
    Liu Shuyan
    Chai Jingchun
    Yang Xiaoning
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2009, 17 (06) : 990 - 998
  • [5] Molecular dynamics simulation of thickening mechanism of supercritical CO2 thickener
    Xue, Ping
    Shi, Jing
    Cao, Xulong
    Yuan, Shiling
    [J]. CHEMICAL PHYSICS LETTERS, 2018, 706 : 658 - 664
  • [6] Solubility of CO2 in Cryogenic Methane: Molecular Dynamics Study
    Zhang, Zhi
    Li, Qibin
    Liu, Chao
    Shi, Taihe
    [J]. ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (16) : 8987 - 8990
  • [7] Molecular dynamics simulation of infinitely dilute solutions of benzene in supercritical CO2
    Tohoku Univ, Sendai, Japan
    [J]. Fluid Phase Equilib, 1 -2 pt 1 (282-288):
  • [8] Molecular dynamics simulation of a reverse micelle self assembly in supercritical CO2
    Lu, Lanyuan
    Berkowitz, Max L.
    [J]. Journal of the American Chemical Society, 2004, 126 (33): : 10254 - 10255
  • [9] Molecular dynamics simulation of infinitely dilute solutions of benzene in supercritical CO2
    Inomata, H
    Saito, S
    Debenedetti, PG
    [J]. FLUID PHASE EQUILIBRIA, 1996, 116 (1-2) : 282 - 288
  • [10] Molecular dynamics simulation of a reverse micelle self assembly in supercritical CO2
    Lu, LY
    Berkowitz, ML
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (33) : 10254 - 10255