DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III

被引:421
|
作者
Mahenthiralingam, E
Bischof, J
Byrne, SK
Radomski, C
Davies, JE
Av-Gay, Y
Vandamme, P
机构
[1] Univ British Columbia, Dept Pediat, Vancouver, BC V6T 1W5, Canada
[2] British Columbia Childrens Hosp, British Columbias Res Inst Childrens & Womens Hlt, Vancouver, BC V6H 3V4, Canada
[3] British Columbia Ctr Dis Control, Mol Diagnost Lab, Vancouver, BC, Canada
[4] Univ British Columbia, Dept Pathol, Vancouver, BC, Canada
[5] Univ British Columbia, Dept Microbiol, Vancouver, BC, Canada
[6] Univ British Columbia, Terragen Divers Inc, Vancouver, BC, Canada
[7] Univ British Columbia, Dept Med, Vancouver, BC, Canada
[8] Univ Ghent, Fac Sci, Microbiol Lab, B-9000 Ghent, Belgium
关键词
D O I
10.1128/JCM.38.9.3165-3173.2000
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Bacteria of the Burkholderia cepacia complex consist of five discrete genomic species, including genomovars I and III and three new species: Burkholderia multivorans (formerly genomovar II), Burkholderia stabilis (formerly genomovar IV), and Burkholderia vietnamiensis (formerly genomovar V). Strains of all five genomovars are capable of causing opportunistic human infection, and microbiological identification of these closely related species is difficult, The 16S rRNA gene (16S rDNA) and recA gene of these bacteria were examined in order to develop rapid tests for genomovar identification. Restriction fragment length polymorphism (RFLP) analysis of PCR-amplified 16S rDNA revealed sequence polymorphisms capable of identifying B. multivorans and B. vietnamiensis but insufficient to discriminate strains of B. cepacia genomovars I and III and B. stabilis, RFLP analysis of PCR-amplified recA demonstrated sufficient nucleotide sequence variation to enable separation of strains of all five B. cepacia complex genomovars. Complete recA nucleotide sequences were obtained for 20 strains representative of the diversity of the B. cepacia complex. Construction of a recA phylogenetic tree identified six distinct clusters (recA groups): B. multivorans, B. vietnamiensis, B. stabilis, genomovar I, and the subdivision of genomovar III isolates into two recA groups, III-A and III-B, Alignment of recA sequences enabled the design of PCR primers for the specific detection of each of the six latter recA groups. The recA gene was found on the largest chromosome within the genome of B. cepacia complex strains and, in contrast to the findings of a previous study, only a single copy of the gene was present. In conclusion, analysis of the recA gene of the B. cepacia complex provides a rapid and robust nucleotide sequence-based approach to identify and classify this taxonomically complex group of opportunistic pathogens.
引用
收藏
页码:3165 / 3173
页数:9
相关论文
共 50 条
  • [1] Discrimination of Burkholderia multivorans and Burkholderia vietnamiensis from Burkholderia cepacia genomovars I, III, and IV by PCR
    Bauernfeind, A
    Schneider, I
    Jungwirth, R
    Roller, C
    [J]. JOURNAL OF CLINICAL MICROBIOLOGY, 1999, 37 (05) : 1335 - 1339
  • [2] BURKHOLDERIA AMBIFARIA PRODUCES A POLYKETIDE ANTIBIOTIC THAT INHIBITS BURKHOLDERIA MULTIVORANS & OTHER BURKHOLDERIA CEPACIA COMPLEX SPECIES
    Mahenthiralingam, E.
    Song, L.
    White, J.
    Wilmot, C.
    Sass, A.
    Marchbank, A.
    Challis, G. L.
    [J]. PEDIATRIC PULMONOLOGY, 2010, : 345 - 345
  • [3] Evidence of transmission of Burkholderia cepacia, Burkholderia multivorans and Burkholderia dolosa among persons with cystic fibrosis
    Biddick, R
    Spilker, T
    Martin, A
    LiPuma, JJ
    [J]. FEMS MICROBIOLOGY LETTERS, 2003, 228 (01) : 57 - 62
  • [4] Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis:: Virulent transmissible strains of genomovar III can replace Burkholderia multivorans
    Mahenthiralingam, E
    Vandamme, P
    Campbell, ME
    Henry, DA
    Gravelle, AM
    Wong, LTK
    Davidson, AGF
    Wilcox, PG
    Nakielna, B
    Speert, DP
    [J]. CLINICAL INFECTIOUS DISEASES, 2001, 33 (09) : 1469 - 1475
  • [5] Development of a multiplex PCR assay for rapid identification of Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia mallei and Burkholderia cepacia complex
    Koh, Seng Fook
    Tay, Sun Tee
    Sermswan, Rasana
    Wongratanacheewin, Surasakdi
    Chua, Kek Heng
    Puthucheary, Savithri D.
    [J]. JOURNAL OF MICROBIOLOGICAL METHODS, 2012, 90 (03) : 305 - 308
  • [6] Isolation of Burkholderia cepacia complex genomovars from waters
    Vermis, K
    Brachkova, M
    Vandamme, P
    Nelis, H
    [J]. SYSTEMATIC AND APPLIED MICROBIOLOGY, 2003, 26 (04) : 595 - 600
  • [7] Identification and population structure of Burkholderia stabilis sp nov (formerly Burkholderia cepacia genomovar IV)
    Vandamme, P
    Mahenthiralingam, E
    Holmes, B
    Coenye, T
    Hoste, B
    De Vos, P
    Henry, D
    Speert, DP
    [J]. JOURNAL OF CLINICAL MICROBIOLOGY, 2000, 38 (03) : 1042 - 1047
  • [8] Taxonomy and identification of the Burkholderia cepacia complex
    Coenye, T
    Vandamme, P
    Govan, JRW
    Lipuma, JJ
    [J]. JOURNAL OF CLINICAL MICROBIOLOGY, 2001, 39 (10) : 3427 - 3436
  • [9] The role of genomovars in Burkholderia cepacia proinflammatory activity
    De Soyza, A
    Egan, C
    Ellis, CD
    McDowell, A
    Moore, J
    Elborn, S
    De Hormaeche, R
    Corris, PA
    [J]. THORAX, 2000, 55 : A12 - A12
  • [10] Understanding Burkholderia cepacia:: Epidemiology, genomovars, and virulence
    Speert, DP
    [J]. INFECTIONS IN MEDICINE, 2001, 18 (01) : 49 - 56