Minimum distance estimation of the errors-in-variables model using linear cumulant equations

被引:75
|
作者
Erickson, Timothy [1 ]
Jiang, Colin Huan [2 ]
Whited, Toni M. [3 ,4 ]
机构
[1] Bur Labor Stat, Washington, DC USA
[2] Univ Chicago, Chicago, IL 60637 USA
[3] Univ Rochester, Rochester, NY 14627 USA
[4] NBER, Cambridge, MA 02138 USA
关键词
Errors-in-variables; Higher cumulants; Investment; Leverage; REGRESSION-COEFFICIENTS; MOMENT ESTIMATORS; GMM ESTIMATION; STRAIGHT-LINE; SUBJECT; IDENTIFICATION; INSTRUMENTS;
D O I
10.1016/j.jeconom.2014.05.011
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider a multiple mismeasured regressor errors-in-variables model. We develop closed-form minimum distance estimators from any number of estimating equations, which are linear in the third and higher cumulants of the observable variables. Using the cumulant estimators alters qualitative inference relative to ordinary least squares in two applications related to investment and leverage regressions. The estimators perform well in Monte Carlos calibrated to resemble the data from our applications. Although the cumulant estimators are asymptotically equivalent to the moment estimators from Erickson and Whited (2002), the finite-sample performance of the cumulant estimators exceeds that of the moment estimators. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:211 / 221
页数:11
相关论文
共 50 条