Noise-induced synchronization of a large population of globally coupled nonidentical oscillators

被引:69
|
作者
Nagai, Ken H. [1 ]
Kori, Hiroshi [1 ,2 ]
机构
[1] Ochanomizu Univ, Div Adv Sci, Tokyo 1128610, Japan
[2] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
关键词
DYNAMICS; PATTERNS; MODEL;
D O I
10.1103/PhysRevE.81.065202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a large population of globally coupled phase oscillators subject to common white Gaussian noise and find analytically that the critical coupling strength between oscillators for synchronization transition decreases with an increase in the intensity of common noise. Thus, common noise promotes the onset of synchronization. Our prediction is confirmed by numerical simulations of the phase oscillators as well as of limit-cycle oscillators.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators
    Lai, Yi Ming
    Porter, Mason A.
    [J]. PHYSICAL REVIEW E, 2013, 88 (01):
  • [2] Collective phase dynamics of globally coupled oscillators: Noise-induced anti-phase synchronization
    Kawamura, Yoji
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2014, 270 : 20 - 29
  • [3] Phase synchronization and noise-induced resonance in systems of coupled oscillators
    Hong, H
    Choi, MY
    [J]. PHYSICAL REVIEW E, 2000, 62 (05): : 6462 - 6468
  • [4] Noise-induced synchronization in Lorenz oscillators
    Yang, Junzhong
    Zhang, Mei
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (08): : 997 - 1004
  • [5] Synchronization in a population of globally coupled chaotic oscillators
    Pikovsky, AS
    Rosenblum, MG
    Kurths, J
    [J]. EUROPHYSICS LETTERS, 1996, 34 (03): : 165 - 170
  • [6] Noise-induced bifurcations and chaos in the average motion of globally-coupled oscillators
    Zhang, Y
    Hu, G
    Chen, SG
    Yao, YG
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2000, 15 (01): : 51 - 57
  • [7] Noise-induced bifurcations and chaos in the average motion of globally-coupled oscillators
    Ying Zhang
    Gang Hu
    Shi Gang Chen
    Yugui Yao
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 15 : 51 - 57
  • [8] Consequential noise-induced synchronization of indirectly coupled self-sustained oscillators
    Pankratova, E. V.
    Belykh, V. N.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (10): : 2509 - 2515
  • [9] Nonequilibrium phenomena in globally coupled phase oscillators: Noise-induced bifurcations, clustering, and switching
    Park, SH
    Kim, S
    Han, SK
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (04): : 917 - 922
  • [10] Consequential noise-induced synchronization of indirectly coupled self-sustained oscillators
    E.V. Pankratova
    V.N. Belykh
    [J]. The European Physical Journal Special Topics, 2013, 222 : 2509 - 2515