Permeability of three-dimensional fracture networks

被引:130
|
作者
Koudina, N
Garcia, RG
Thovert, JF
Adler, PM
机构
[1] SP2MI, CNRS, LCD PTM, F-86960 Futuroscope, France
[2] Inst Phys Globe, F-75252 Paris 05, France
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 04期
关键词
D O I
10.1103/PhysRevE.57.4466
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The permeability of a three-dimensional network of polygonal fractures is determined by triangulating the network and solving the two-dimensional Darcy equation in each fracture. The general triangulation methodology and the numerical solution are presented. Networks of regular hexagonal fractures an detailed; finite-size scaling is used to analyze the data relative to the percolation threshold, but the conduction exponent t is found close to its classical value in three dimensions; for large fracture densities, permeability is shown to tend towards the mean-field model of Snow [Water Resour. Res. 5, 1273 (1969)]. Finally, the influence of the shape of the fracture is studied and can be rationalized by means of the excluded volume.
引用
收藏
页码:4466 / 4479
页数:14
相关论文
共 50 条
  • [1] Permeability and percolation of anisotropic three-dimensional fracture networks
    Khamforoush, M.
    Shams, K.
    Thovert, J. -F.
    Adler, P. M.
    [J]. PHYSICAL REVIEW E, 2008, 77 (05)
  • [2] Fracture in three-dimensional fuse networks
    Batrouni, GG
    Hansen, A
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (02) : 325 - 328
  • [3] Dispersion in three-dimensional fracture networks
    Huseby, O
    Thovert, JF
    Adler, PM
    [J]. PHYSICS OF FLUIDS, 2001, 13 (03) : 594 - 615
  • [4] PERMEABILITY CALCULATIONS IN THREE-DIMENSIONAL FIBER NETWORKS
    Styllanopoulos, T.
    Yeckel, A.
    Derby, J. J.
    Luo, X. J.
    Shephard, M. S.
    Sander, E. A.
    Barocas, V. H.
    [J]. PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE 2008, PTS A AND B, 2009, : 1033 - 1034
  • [5] Macroscopic permeability of three-dimensional fracture networks with power-law size distribution
    Mourzenko, VV
    Thovert, JF
    Adler, PM
    [J]. PHYSICAL REVIEW E, 2004, 69 (06):
  • [6] Effect of Fracture Geometry Parameters on the Permeability of a Random Three-Dimensional Fracture Network
    Zhang, Bochao
    Wang, Lixin
    Liu, Jianming
    [J]. PROCESSES, 2023, 11 (08)
  • [7] Fracture of three-dimensional fuse networks with quenched disorder
    Raisanen, VI
    Alava, MJ
    Nieminen, RM
    [J]. PHYSICAL REVIEW B, 1998, 58 (21): : 14288 - 14295
  • [8] Solute transport and retention in three-dimensional fracture networks
    Cvetkovic, Vladimir
    Frampton, Andrew
    [J]. WATER RESOURCES RESEARCH, 2012, 48
  • [9] FLOW SIMULATION IN THREE-DIMENSIONAL DISCRETE FRACTURE NETWORKS
    Erhel, Jocelyne
    De Dreuzy, Jean-Raynald
    Poirriez, Baptiste
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04): : 2688 - 2705
  • [10] Permeability of Three-Dimensional Numerically Grown Geomechanical Discrete Fracture Networks With Evolving Geometry and Mechanical Apertures
    Thomas, Robin N.
    Paluszny, Adriana
    Zimmerman, Robert W.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (04)