Large scale continuous synthesis of carbon-encapsulated magnetic nanoparticles

被引:43
|
作者
Bystrzejewski, M. [1 ]
Huczko, A.
Lange, H.
Baranowski, P.
Cota-Sanchez, G.
Soucy, G.
Szczytko, J.
Twardowski, A.
机构
[1] Univ Warsaw, Dept Chem, PL-02093 Warsaw, Poland
[2] Univ Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada
[3] Atom Energy Canada Ltd, Whiteshell Labs, Pinawa, MB R0E 1L0, Canada
[4] Univ Warsaw, Dept Phys, PL-00681 Warsaw, Poland
关键词
D O I
10.1088/0957-4484/18/14/145608
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Fe, Fe3C and NdC2 nanoparticles, encapsulated within carbon cages, were continuously produced during the induction thermal plasma processing of Fe14Nd2B, in the presence of methane or acetylene. The product morphology was studied by means of SEM. Further structural details were obtained from TEM, HRTEM, Raman spectroscopy and x-ray powder diffraction studies. The so-produced nanostructures have core-shell structure, with inner cavity diameters varying between 10 and 30 nm. The carbon coatings were composed of between 5 and 25 graphene layers. The carbon cages were built from sp(2) carbon atoms, which protected the encapsulated nanoparticles from both oxidation and agglomeration. The plasma generated products were ferromagnetic, with maximum values of coercivity field of 600 G s, and saturation magnetization values of up to 40 emu g(-1).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Continuous synthesis of carbon-encapsulated magnetic nanoparticles with a minimum production of amorphous carbon
    Bystrzejewski, M.
    Karoly, Z.
    Szepvolgyi, J.
    Kaszuwara, W.
    Huczko, A.
    Lange, H.
    [J]. CARBON, 2009, 47 (08) : 2040 - 2048
  • [2] Detonation Synthesis of Carbon-Encapsulated Magnetic Nanoparticles
    Yin, Hao
    Gao, Xin
    Xu, Chunxiao
    Chen, Pengwan
    Liu, Jianjun
    Zhou, Qiang
    [J]. FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2015, 23 (07) : 605 - 611
  • [3] Continuous synthesis of controlled size carbon-encapsulated iron nanoparticles
    Bystrzejewski, M.
    Karoly, Z.
    Szepvoelgyi, J.
    Huczko, A.
    Lange, H.
    [J]. MATERIALS RESEARCH BULLETIN, 2011, 46 (12) : 2408 - 2417
  • [4] Solid-phase synthesis of carbon-encapsulated magnetic nanoparticles
    Wang, Cheng Fa
    Wang, Jian Nong
    Sheng, Zhao Min
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (17): : 6303 - 6307
  • [5] Synthesis of carbon-encapsulated nickel nanoparticles
    Narkiewicz, U.
    Podsiadly, M.
    [J]. APPLIED SURFACE SCIENCE, 2010, 256 (17) : 5249 - 5253
  • [6] Magnetic enhancement of carbon-encapsulated magnetite nanoparticles
    Lee, Jiann-Shing
    Song, Yuan-Jhe
    Hsu, Hua-Shu
    Lin, Chun-Rong
    Huang, Jing-Ya
    Chen, Jiunn
    [J]. Journal of Alloys and Compounds, 2021, 790 : 716 - 722
  • [7] Synthesis of carbon-encapsulated magnetic nanoparticles by pulsed laser irradiation of solution
    Park, J. B.
    Jeong, S. H.
    Jeong, M. S.
    Kim, J. Y.
    Cho, B. K.
    [J]. CARBON, 2008, 46 (11) : 1369 - 1377
  • [8] Magnetic enhancement of carbon-encapsulated magnetite nanoparticles
    Lee, Jiann-Shing
    Song, Yuan-Jhe
    Hsu, Hua-Shu
    Lin, Chun-Rong
    Huang, Jing-Ya
    Chen, Jiunn
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 790 : 716 - 722
  • [9] Synthesis of carbon-encapsulated magnetic nanoparticles by a grain-boundary-reaction
    Wang, QX
    Ning, GQ
    Wei, F
    Luo, GH
    [J]. UNCONVENTIONAL APPROACHES TO NANOSTRUCTURES WITH APPLICATIONS IN ELECTRONICS, PHOTONICS, INFORMATION STORAGE AND SENSING, 2003, 776 : 55 - 60
  • [10] Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method
    Liu, BH
    Ding, J
    Zhong, ZY
    Dong, ZL
    White, T
    Lin, JY
    [J]. CHEMICAL PHYSICS LETTERS, 2002, 358 (1-2) : 96 - 102