BST ceramics with doping of 1, 3, and 5 wt.% ZnBO were prepared by the conventional mixed oxide method and sintered at 1100 degrees C. X-ray diffraction analyses were carried out to verify the structural properties. 1, 3, and 5 wt.% ZnBO doped BST ceramics were crystallized with weak tetragonal structure at 1100 degrees C. The grain growth behavior and shapes were investigated by scanning electron microscopy images. The electrical properties of 1, 3, and 5 wt.% ZnBO doped BST ceramics were investigated by impedance spectroscopy at the different temperatures (350, 375, and 400 degrees C). Impedance spectroscopy data presented in Nyquist plot show the existence of both grain and grain boundary effects in all specimens. 1, 3, and 5 wt.% ZnBO doped BST ceramics showed negative temperature coefficient of resistance (NTCR). Also, the capacitances and resistances of grains and grain boundaries for 1, 3, and 5 wt.% doped BST ceramics were simulated through equivalent circuit with the parallelly connected capacitors and resistors. The capacitance and resistance were decreased when temperature and ZnBO dopants were increased.