ON THE INTEGRALITY OF THE ELEMENTARY SYMMETRIC FUNCTIONS OF 1, 1/3, ..., 1/(2n-1)

被引:7
|
作者
Wang, Chunlin [1 ]
Hong, Shaofang [1 ]
机构
[1] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
基金
美国国家科学基金会;
关键词
elementary symmetric function; harmonic series;
D O I
10.1515/ms-2015-0064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Erdos and Niven proved that for any positive integers m and d, there are only finitely many positive integers n for which one or more of the elementary symmetric functions of 1/m, 1/(m + d),...,1/(m + nd) are integers. In this paper, we show that if n >= 2, then none of the elementary symmetric functions of 1, 1/3,..., 1/(2n - 1) is an integer. (C) 2015 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:957 / 962
页数:6
相关论文
共 50 条
  • [1] On the Elementary Symmetric Functions of 1, 1/2, ..., 1/n
    Chen, Yong-Gao
    Tang, Min
    AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (10): : 862 - 867
  • [2] On the integrality of the first and second elementary symmetric functions of 1, 1/2s2, ... ,1/nsn
    Yang, Wanxi
    Li, Mao
    Feng, Yulu
    Jiang, Xiao
    AIMS MATHEMATICS, 2017, 2 (04): : 682 - 691
  • [3] SPREADS AND PACKINGS FOR A CLASS OF ((2N + 1) (2N-1 - 1) + 1, 2N-1, 1)-DESIGNS
    BAKER, RD
    EBERT, GL
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (01) : 45 - 54
  • [4] On a new code, [2n-1, n, 2n-1]
    Basu, M.
    Rahaman, Md. M.
    Bagchi, S.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (02) : 402 - 405
  • [5] RM(2N-1) AND PHIN(2N-1) FAMILIES
    MAKEEV, GN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1990, (01): : 84 - 86
  • [6] ELEMENTARY SYMMETRIC FUNCTIONS OF 1,2, ... P-1
    BLOOM, DM
    BREUSCH, R
    BROWN, K
    FOSTER, LL
    JOHNSON, W
    KUIPERS, L
    LOSSERS, OP
    ORR, DE
    SHOU, NS
    AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (06): : 425 - 425
  • [7] Residue number system to binary converter for the moduli set (2n-1, 2n-1, 2n+1)
    Hiasat, A
    Sweidan, A
    JOURNAL OF SYSTEMS ARCHITECTURE, 2003, 49 (1-2) : 53 - 58
  • [8] Efficient two-level reverse converters for the four-moduli set {2n-1, 2n-1, 2n-1-1, 2n+1-1}
    Obeidi Daghlavi, Mohammad
    Noorimehr, Mohammad Reza
    Esmaeildoust, Mohammad
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2021, 108 (01) : 75 - 87
  • [9] Efficient reverse converters for four-moduli sets {2n-1, 2n, 2n+1, 2n+1-1} and {2n-1, 2n, 2n+1, 2n-1-1}
    Cao, B
    Srikanthan, T
    Chang, CH
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 2005, 152 (05): : 687 - 696
  • [10] On the diophantine equation (2n-1)(3n-1) = x2
    Szalay, L
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 57 (1-2): : 1 - 9