Resampling-based prediction intervals in beta regressions under correct and incorrect model specification

被引:1
|
作者
Cribari-Neto, Francisco [1 ]
Lima, Fabio P. [1 ]
机构
[1] Univ Fed Pernambuco, Dept Estat, BR-50670901 Recife, PE, Brazil
关键词
Beta regression; Bootstrap; Missing data; Model misspecifiction; Prediction interval; SELECTION CRITERIA; INTELLIGENCE;
D O I
10.1080/03610918.2019.1583344
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new bootstrap-based prediction interval for missing responses in beta regressions and, using numerical experiments, compare it to two other resampling-based intervals that are available in the literature. Additionally, we evaluate the impact of model misspecification on the empirical coverages of different beta regression prediction intervals. The numerical evidence we provide shows that the prediction interval we propose typically displays coverage rates that are slightly closer to the desired coverage levels than the competing prediction intervals. We also investigate the impact of model misspecification on three bootstrap prediction intervals. The numerical evidence shows that in some cases interval prediction remains accurate. In particular, misspecification of the model link functions has little impact on interval prediction accuracy. In contrast, the prediction intervals display substantial overcoverages when one fails to account for varying precision or for existing nonlinearity. An empirical application is also presented and discussed.
引用
收藏
页码:1398 / 1416
页数:19
相关论文
共 50 条
  • [1] Bootstrap prediction intervals in beta regressions
    Patrícia L. Espinheira
    Silvia L. P. Ferrari
    Francisco Cribari-Neto
    [J]. Computational Statistics, 2014, 29 : 1263 - 1277
  • [2] Bootstrap prediction intervals in beta regressions
    Espinheira, Patricia L.
    Ferrari, Silvia L. P.
    Cribari-Neto, Francisco
    [J]. COMPUTATIONAL STATISTICS, 2014, 29 (05) : 1263 - 1277
  • [3] Erratum to: Bootstrap prediction intervals in beta regressions
    Patrícia L. Espinheira
    Silvia L. P. Ferrari
    Francisco Cribari-Neto
    [J]. Computational Statistics, 2017, 32 : 1777 - 1777
  • [4] Resampling-based simultaneous confidence intervals for location shift using medians
    Richter, Scott J.
    McCann, Melinda H.
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2016, 100 (02) : 189 - 205
  • [5] Relative Excess Risk Due to Interaction Resampling-based Confidence Intervals
    Nie, Lei
    Chu, Haitao
    Li, Feng
    Cole, Stephen R.
    [J]. EPIDEMIOLOGY, 2010, 21 (04) : 552 - 556
  • [6] Resampling-based simultaneous confidence intervals to compare scale using deviances
    Richter, Scott J.
    McCann, Melinda. H.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (07) : 3146 - 3155
  • [7] Resampling-based confidence intervals for model-free robust inference on optimal treatment regimes
    Wu, Yunan
    Wang, Lan
    [J]. BIOMETRICS, 2021, 77 (02) : 465 - 476
  • [8] Resampling-based simultaneous confidence intervals for location shift using medians
    Scott J. Richter
    Melinda H. McCann
    [J]. AStA Advances in Statistical Analysis, 2016, 100 : 189 - 205
  • [9] Asymptotic and resampling-based confidence intervals for P(X<Y)
    Baklizi, A
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2006, 35 (02) : 295 - 307
  • [10] Resampling-based bias-corrected time series prediction
    Bandyopadhyay, S.
    Lahiri, S. N.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (12) : 3775 - 3788