Invariant solutions for the static vacuum equation

被引:6
|
作者
Leandro, Benedito [1 ]
Pina, Romildo [2 ]
机构
[1] Univ Fed Goias, Ctr Ciencias Exatas, BR 364,Km 195,3800, BR-75801615 Jatai, Go, Brazil
[2] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
关键词
MULTIPLE BLACK-HOLES; SCALAR CURVATURE; EINSTEIN EQUATIONS; SPACE-TIMES; NONEXISTENCE;
D O I
10.1063/1.4995403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the static vacuum Einstein space-time when the spatial factor (or, base) is conformal to a pseudo-Euclidean space, which is invariant under the action of a translation group. We characterize all such solitons. Moreover, we give examples of static vacuum Einstein solutions for Einstein's field equation. Applications provide an explicit example of a complete static vacuum Einstein space-time. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Non-static solutions of the Einstein equation in the vacuum
    Pinzon, Jorge E.
    Salas, Alvaro H.
    Castillo, Jairo E.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (01): : 439 - 445
  • [2] A note on static solutions of a Lorentz invariant equation in dimension 3
    Cid, C
    Felmer, P
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2000, 53 (01) : 1 - 10
  • [3] A Note on Static Solutions of a Lorentz Invariant Equation in Dimension 3
    Carlos Cid
    Patricio Felmer
    [J]. Letters in Mathematical Physics, 2000, 53 : 1 - 10
  • [4] Reduction of the n-dimensional static vacuum Einstein equation and generalized Schwarzschild solutions
    dos Santos, Joao Paulo
    Leandro, Benedito
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (02) : 882 - 896
  • [5] GROUP INVARIANT SOLUTIONS OF THE ERNST EQUATION
    PRYSE, PV
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (01) : 163 - 175
  • [6] On group invariant solutions of the Boltzmann equation
    Bobylev, AV
    Caraffini, GL
    Spiga, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (06) : 2787 - 2795
  • [7] Classification of invariant solutions of the Boltzmann equation
    Grigoryev, YN
    Meleshko, SV
    Sattayatham, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (28): : L337 - L343
  • [8] Analytic solutions of an equation of invariant curves
    Li, WR
    Liu, HZ
    Cheng, SS
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 1014 - 1021
  • [9] Invariant solutions for the Einstein field equation
    Barboza, Marcelo
    Leandro, Benedito
    Pina, Romildo
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [10] INVARIANT SOLUTIONS OF THE MULTIDIMENSIONAL LIOUVILLE EQUATION
    SEGEDA, YN
    [J]. UKRAINSKII FIZICHESKII ZHURNAL, 1988, 33 (12): : 1856 - 1859