Synthesizing Datasets for Pervasive Spaces

被引:0
|
作者
Mendez-Vazquez, Andres [1 ]
Helal, Abdelsalam [1 ]
Cook, Diane Joyce [2 ]
机构
[1] Univ Florida, Mobile & Pervas Comp Lab, Gainesville, FL 32611 USA
[2] Washington State Univ, Sch Engn & Comp Sci, Pullman, WA 99164 USA
来源
关键词
Pervasive spaces; simulation; event generation; probabilistic models;
D O I
10.3233/978-1-60750-034-6-303
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Persistent problems in obtaining test data while developing technologies for pervasive spaces include the lack of data generation and representation standards, limited amount of available test data, incompleteness of existing data sets, and high cost of implementing a given pervasive space. This not only hinders the development and design of pervasive spaces, but also decreases the ability of researchers to compare results with those of other areas in computer science. For example, in the interaction between sensors and actuators, testing the robustness of new algorithms and evaluating risk requires large datasets that portray different scenarios. However, associated costs can be prohibitive as the data burden increases. In response to this situation, we propose a Pervasive Space Simulation Technique (PSST) that uses Markov chains, non-homogenous Poisson processes, and distribution fitting for generation of synthetic test data. PSST provides a realistic simulation of events in the pervasive space.
引用
收藏
页码:303 / +
页数:2
相关论文
共 50 条
  • [1] Specification and Synthesis of Sensory Datasets in Pervasive Spaces
    Helal, Abdelsalam
    Mendez-Vazquez, Andres
    Hossain, Shantonu
    [J]. ISCC: 2009 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, VOLS 1 AND 2, 2009, : 920 - 925
  • [2] Towards Recognising Individual Behaviours from Pervasive Mobile Datasets in Urban Spaces
    Klimek, Radoslaw
    [J]. SUSTAINABILITY, 2019, 11 (06)
  • [3] Programming Pervasive Spaces
    Helal, Sumi
    [J]. UBIQUITOUS INTELLIGENCE AND COMPUTING, 2010, 6406 : 1 - 1
  • [4] Programming pervasive spaces
    Helal, S
    [J]. IEEE PERVASIVE COMPUTING, 2005, 4 (01) : 84 - 87
  • [5] Synthesizing categorical datasets to enhance inference
    Berrocal, Veronica J.
    Miranda, Marie Lynn
    Gelfand, Alan E.
    Bhattacharya, Sourabh
    [J]. STATISTICAL METHODOLOGY, 2013, 15 : 25 - 45
  • [6] Pervasive and weakly pervasive pre-Riesz spaces
    Kalauch, A.
    Malinowski, H.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (02): : 375 - 385
  • [7] Synthesizing Privacy Preserving Entity Resolution Datasets
    Qinl, Xuedi
    Chai, Chengliang
    Tang, Nan
    Li, Jian
    Luo, Yuyu
    Li, Guoliang
    Zhu, Yaoyu
    [J]. 2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 2359 - 2371
  • [8] A Generative Model for Synthesizing Structured Datasets Based on GAN
    Song, Kehui
    Zhang, Ying
    Zhang, Jiangwei
    Yuan, Xiaojie
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (09): : 1832 - 1842
  • [9] Synthesizing Traffic Datasets using Graph Neural Networks
    Rodriguez-Criado, Daniel
    Chli, Maria
    Manso, Luis J.
    Vogiatzis, George
    [J]. 2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 3361 - 3368
  • [10] Datamime: Generating Representative Benchmarks by Automatically Synthesizing Datasets
    Lee, Hyun Ryong
    Sanchez, Daniel
    [J]. 2022 55TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2022, : 1144 - 1159