Solving the Regenerator Location Problem using bio-inspired algorithms

被引:0
|
作者
Ferreira, Pedro [1 ]
Bernardino, Anabela [2 ]
Pessoa, Rodrigo [1 ]
Bernardino, Eugenia [2 ]
Piedade, Beatriz [2 ]
机构
[1] Polytech Inst Leiria, Sch Technol & Management, Leiria, Portugal
[2] Polytech Inst Leiria, Comp Sci & Commun Res Ctr, Sch Technol & Management, Leiria, Portugal
关键词
Evolutionary Algorithms; Optimisation; Regenerator Location Problem; Computer Networks; PLACEMENT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In optical networks, the signal strength deteriorates as it gets further away from its source. This happens due to deficiencies in the fiber (attenuation, dispersion, conversion). Therefore, we can say that the distance a signal can travel without losing or corrupting information is limited. It is necessary to regenerate the signals periodically using regenerators. Given an optical network, the regenerator location problem tries to install a subset of regenerators with the minimum possible cost, in a way that each pair of nodes can communicate with each other. In this paper bio-inspired algorithms are used to solve this problem. Results obtained using 480 different instances prove their efficiency in solving the regenerator location problem.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Solving ring loading problems using bio-inspired algorithms
    Bernardino, Anabela Moreira
    Bernardino, Eugenia Moreira
    Manuel Sanchez-Perez, Juan
    Antonio Gomez-Pulido, Juan
    Angel Vega-Rodriguez, Miguel
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2011, 34 (02) : 668 - 685
  • [2] On the Application of Bio-inspired Algorithms in Timetabling Problem
    Francisco, Daniela Oliveira
    da Silva, Ivan Nunes
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 637 - 644
  • [3] Combining Apriori heuristic and bio-inspired algorithms for solving the frequent itemsets mining problem
    Djenouri, Youcef
    Comuzzi, Marco
    [J]. INFORMATION SCIENCES, 2017, 420 : 1 - 15
  • [4] Eight Bio-inspired Algorithms Evaluated for Solving Optimization Problems
    Barbosa, Carlos Eduardo M.
    Vasconcelos, Germano C.
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 290 - 301
  • [5] BIO-INSPIRED SYSTEMS AND THEIR APPROACH TO ENGINEERING PROBLEM-SOLVING
    Rocha, Diego F.
    Lopez Sarmiento, Danilo Alfonso
    Gomez Vargas, Ernesto
    [J]. REDES DE INGENIERIA-ROMPIENDO LAS BARRERAS DEL CONOCIMIENTO, 2010, 1 (02): : 22 - 29
  • [6] Solving the shopping plan problem through bio-inspired approaches
    Francesco Orciuoli
    Mimmo Parente
    Autilia Vitiello
    [J]. Soft Computing, 2016, 20 : 2077 - 2089
  • [7] Solving the shopping plan problem through bio-inspired approaches
    Orciuoli, Francesco
    Parente, Mimmo
    Vitiello, Autilia
    [J]. SOFT COMPUTING, 2016, 20 (05) : 2077 - 2089
  • [8] Bio-Inspired Algorithms for Mobile Location Management-A New Paradigm
    Swayamsiddha, Swati
    Parija, Smita
    Singh, Sudhansu Sekhar
    Sahu, Prasanna Kumar
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON FRONTIERS IN INTELLIGENT COMPUTING: THEORY AND APPLICATIONS, (FICTA 2016), VOL 2, 2017, 516 : 35 - 44
  • [9] Design of Photonic Devices Using Bio-Inspired Algorithms
    Silva-Santos, Carlos H.
    Claudio, Kleucio
    Hernandez-Figueroa, Hugo E.
    Goncalves, Marcos Sergio
    [J]. 2009 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE (IMOC 2009), 2009, : 117 - +
  • [10] Heat production optimization using bio-inspired algorithms
    Wozniak, Marcin
    Ksiazek, Kamil
    Marciniec, Jakub
    Polap, Dawid
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 76 : 185 - 201