Adaptive fuzzy bilinear feedback control design for synchronization of TS fuzzy bilinear generalized Lorenz system with uncertain parameters

被引:6
|
作者
Baek, Jaeho [1 ]
机构
[1] Yonsei Univ, Dept Elect & Elect Engn, ICS Lab B723, Seoul 120749, South Korea
关键词
Generalized Lorenz system; TS fuzzy bilinear model; Adaptive feedback control; Adaptive chaos synchronization; Lyapunov theory; SLIDING MODE CONTROL; CHAOTIC SYSTEMS; CANONICAL FORM; OBSERVER; CIRCUITS;
D O I
10.1016/j.physleta.2010.02.014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we propose an adaptive fuzzy bilinear feedback control (FBFC) design for synchronization of Takagi-Sugeno (TS) fuzzy bilinear generalized Lorenz system (FBGLS) with uncertain parameters. The generalized Lorenz system (GLS) can be described to TS FBGLS. We design an adaptive synchronization scheme of the response system based on TS FBGLS, feedback control scheme and Lyapunov theory. Lyapunov theory is employed to guarantee the stability of error dynamic system and to derive the adaptive laws to estimate unknown parameters. Numerical example is given to demonstrate the validity of our proposed adaptive FBFC approach with comparative results for synchronization. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1827 / 1834
页数:8
相关论文
共 50 条
  • [1] Adaptive fuzzy bilinear observer based synchronization design for generalized Lorenz system
    Baek, Jaeho
    Lee, Heejin
    Kim, Seungwoo
    Park, Mignon
    [J]. PHYSICS LETTERS A, 2009, 373 (47) : 4368 - 4375
  • [2] Fuzzy bilinear state feedback control design based on TS fuzzy bilinear model for DC-DC converters
    Baek, Jaeho
    Park, Mignon
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2012, 42 (01) : 710 - 720
  • [3] Guaranteed Cost Control for Fuzzy Bilinear Systems with Uncertain Parameters
    Gao, Ze-Feng
    Chen, Jun
    Liu, Fei
    [J]. MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 1723 - 1729
  • [4] State-feedback stabilisation for fuzzy bilinear uncertain system with disturbance via fuzzy control approach
    Tsai, Shun-Hung
    Chen, Wen-Hui
    Hsiao, Ming-Ying
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (08) : 1386 - 1395
  • [5] Hybrid Synchronization of Uncertain Generalized Lorenz System by Adaptive Control
    Zhou, Xinlian
    Xu, Yuhua
    [J]. JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2018, 2018
  • [6] Fuzzy dynamic output-feedback control for markov jump fuzzy bilinear system
    Chang, Ru
    Fang, Yiming
    Liu, Le
    [J]. ICIC Express Letters, Part B: Applications, 2015, 6 (10): : 2883 - 2890
  • [7] Fuzzy optimal control for bilinear stochastic systems with fuzzy parameters
    Dabbous, TE
    [J]. DYNAMICS AND CONTROL, 2001, 11 (03) : 243 - 259
  • [8] Robust H∞ fuzzy control for a class of uncertain discrete fuzzy bilinear systems
    Li, Tzuu-Hseng S.
    Tsai, Shun-Hung
    Lee, Jia-Zhen
    Hsiao, Ming-Ying
    Chao, Chan-Hong
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (02): : 510 - 527
  • [9] Robust Adaptive Fuzzy Control of Uncertain Bilinear Systems with Unknown Dead-Zone
    Chiang, Chiang-Cheng
    Cheng, Chao-Yu
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 920 - 927
  • [10] Static output feedback control for discrete-time fuzzy bilinear system
    Guo Zhang1
    2.Academic of Information Technology
    [J]. Journal of Systems Engineering and Electronics, 2010, 21 (02) : 296 - 299