ecospat: an R package to support spatial analyses and modeling of species niches and distributions

被引:751
|
作者
Di Cola, Valeria [1 ]
Broennimann, Olivier [1 ]
Petitpierre, Blaise [1 ]
Breiner, Frank T. [1 ,10 ]
D'Amen, Manuela [1 ]
Randin, Christophe [2 ,10 ]
Engler, Robin [6 ,7 ]
Pottier, Julien [8 ]
Pio, Dorothea [1 ,3 ]
Dubuis, Anne [1 ]
Pellissier, Loic [9 ,10 ]
Mateo, Ruben G. [1 ]
Hordijk, Wim [1 ,4 ]
Salamin, Nicolas [1 ,7 ]
Guisan, Antoine [1 ,5 ]
机构
[1] Univ Lausanne, Dept Ecol & Evolut, Lausanne, Switzerland
[2] Observ Mt Blanc, CREA, Chamonix Mt Blanc, France
[3] Fauna & Flora Int, London, England
[4] Konrad Lorenz Inst Evolut & Cognit Res, Klosterneuburg, Austria
[5] Univ Lausanne, Inst Earth Surface Dynam IDYST, Lausanne, Switzerland
[6] SIB Swiss Inst Bioinformat, Vital IT Grp, Genopode, Lausanne, Switzerland
[7] SIB Swiss Inst Bioinformat, Genopode, Lausanne, Switzerland
[8] INRA, UR874, Grassland Ecosyst Res Unit, Clermont Ferrand, France
[9] Inst Terr Ecosyst, Landscape Ecol, Zurich, Switzerland
[10] Swiss Fed Res Inst WSL, Birmensdorf, Switzerland
基金
瑞士国家科学基金会;
关键词
HABITAT-SUITABILITY MODELS; PHYLOGENETIC DIVERSITY; CLIMATE-CHANGE; LAND-USE; BIOTIC INTERACTIONS; NONNATIVE BIRDS; MOUNTAIN PLANTS; RANGE; SHIFT; DYNAMICS;
D O I
10.1111/ecog.02671
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The aim of the ecospat package is to make available novel tools and methods to support spatial analyses and modeling of species niches and distributions in a coherent workflow. The package is written in the R language (R Development Core Team) and contains several features, unique in their implementation, that are complementary to other existing R packages. Pre-modeling analyses include species niche quantifications and comparisons between distinct ranges or time periods, measures of phylogenetic diversity, and other data exploration functionalities (e. g. extrapolation detection, ExDet). Core modeling brings together the new approach of ensemble of small models (ESM) and various implementations of the spatially-explicit modeling of species assemblages (SESAM) framework. Post-modeling analyses include evaluation of species predictions based on presence-only data (Boyce index) and of community predictions, phylogenetic diversity and environmentally-constrained species co-occurrences analyses. The ecospat package also provides some functions to supplement the ` biomod2' package (e. g. data preparation, permutation tests and cross-validation of model predictive power). With this novel package, we intend to stimulate the use of comprehensive approaches in spatial modelling of species and community distributions.
引用
收藏
页码:774 / 787
页数:14
相关论文
共 36 条
  • [1] virtualspecies, an R package to generate virtual species distributions
    Leroy, Boris
    Meynard, Christine N.
    Bellard, Celine
    Courchamp, Franck
    [J]. ECOGRAPHY, 2016, 39 (06) : 599 - 607
  • [2] ForestFit: An R package for modeling plant size distributions
    Teimouri, Mahdi
    Doser, Jeffrey W.
    Finley, Andrew O.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2020, 131
  • [3] disaggregation: An R Package for Bayesian Spatial Disaggregation Modeling
    Nandi, Anita K.
    Lucas, Tim C. D.
    Arambepola, Rohan
    Gething, Peter
    Weiss, Daniel J.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2023, 106 (11):
  • [4] Modeling Multivariate Distributions with Continuous Margins Using the copula R Package
    Kojadinovic, Ivan
    Yan, Jun
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2010, 34 (09):
  • [5] SSN: An R Package for Spatial Statistical Modeling on Stream Networks
    Hoef, Jay M. Ver
    Peterson, Erin E.
    Clifford, David
    Shah, Rohan
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2014, 56 (03): : 1 - 45
  • [6] WALLACE: A flexible platform for reproducible modeling of species niches and distributions built for community expansion
    Kass, Jamie M.
    Vilela, Bruno
    Aiello-Lammens, Matthew E.
    Muscarella, Robert
    Merow, Cory
    Anderson, Robert P.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2018, 9 (04): : 1151 - 1156
  • [7] samc: an R package for connectivity modeling with spatial absorbing Markov chains
    Marx, Andrew J.
    Wang, Chao
    Sefair, Jorge A.
    Acevedo, Miguel A.
    Fletcher, Robert J., Jr.
    [J]. ECOGRAPHY, 2020, 43 (04) : 518 - 527
  • [8] CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors
    Lee, Duncan
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2013, 55 (13): : 1 - 24
  • [9] The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity
    Galante, Peter J.
    Alade, Babatunde
    Muscarella, Robert
    Jansa, Sharon A.
    Goodman, Steven M.
    Anderson, Robert P.
    [J]. ECOGRAPHY, 2018, 41 (05) : 726 - 736
  • [10] ENM2020: A FREE ONLINE COURSE AND SET OF RESOURCES ON MODELING SPECIES NICHES AND DISTRIBUTIONS
    Peterson, A. Townsend
    Aiello-Lammens, Matthew E.
    Amatulli, Giuseppe
    Anderson, Robert P.
    Cobos, Marlon E.
    Diniz-Filho, Jose Alexandre F.
    Escobar, Luis E.
    Feng, Xiao
    Franklin, Janet
    Gadelha, Luiz M. R., Jr.
    Georges, D.
    Gueguen, M.
    Gueta, Tomer
    Ingenloff, Kate
    Jarvie, Scott
    Jimenez, Laura
    Karger, Dirk N.
    Kass, Jamie M.
    Kearney, Michael R.
    Loyola, Rafael
    Machado-Stredel, Fernando
    Martinez-Meyer, Enrique
    Merow, Cory
    Mondelli, Maria Luiza
    Mortara, Sara Ribeiro
    Muscarella, Robert
    Myers, Corinne E.
    Naimi, Babak
    Noesgaard, Daniel
    Ondo, Ian
    Osorio-Olvera, Luis
    Owens, Hannah L.
    Pearson, Richard
    Pinilla-Buitrago, Gonzalo E.
    Sanchez-Tapia, Andrea
    Saupe, Erin E.
    Thuiller, Wilfried
    Varela, Sara
    Warren, Dan L.
    Wieczorek, John
    Yates, Katherine
    Zhu, Gengping
    Zuquim, Gabriela
    Zurell, Damaris
    [J]. BIODIVERSITY INFORMATICS, 2022, 17 : 1 - 9