A posteriori error estimators for hierarchical B-spline discretizations

被引:11
|
作者
Buffa, Annalisa [1 ,2 ]
Garau, Eduardo M. [3 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Basic Sci, MATHICSE MNS, Lausanne, Switzerland
[2] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Pavia, Italy
[3] Univ Nacl Litoral, CONICET, FIQ, Santa Fe, Argentina
来源
关键词
A posteriori error estimators; adaptivity; hierarchical splines; ADAPTIVE ISOGEOMETRIC METHODS; OPTIMAL CONVERGENCE-RATES; BOUNDARY-ELEMENT METHODS; LOCAL REFINEMENT; RECOVERY; SPACES;
D O I
10.1142/S0218202518500392
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a function-based a posteriori error estimators for the solution of linear second-order elliptic problems considering hierarchical spline spaces for the Galerkin discretization. We obtain a global upper bound for the energy error over arbitrary hierarchical mesh configurations which simplifies the implementation of adaptive refinement strategies. The theory hinges on some weighted Poincare-type inequalities where the B-spline basis functions are the weights appearing in the norms. Such inequalities are derived following the lines in [A. Veeser and R. Verfurth, Explicit upper bounds for dual norms of residuals, SIAM J. Numer. Anal. 47 (2009) 2387-2405], where the case of standard finite elements is considered. Additionally, we present numerical experiments that show the efficiency of the error estimators independently of the degree of the splines used for the discretization, together with an adaptive algorithm guided by these local estimators that yields optimal meshes and rates of convergence, exhibiting an excellent performance.
引用
收藏
页码:1453 / 1480
页数:28
相关论文
共 50 条
  • [1] Hierarchical B-spline refinement
    Forsey, David R.
    Bartels, Richard H.
    [J]. Computer Graphics (ACM), 1988, 22 (04): : 205 - 212
  • [2] B-spline goal-oriented error estimators for geometrically nonlinear rods
    Dede, L.
    Santos, H. A. F. A.
    [J]. COMPUTATIONAL MECHANICS, 2012, 49 (01) : 35 - 52
  • [3] B-spline goal-oriented error estimators for geometrically nonlinear rods
    L. Dedè
    H. A. F. A. Santos
    [J]. Computational Mechanics, 2012, 49 : 35 - 52
  • [4] Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations
    Buffa, A.
    Sangalli, G.
    Vazquez, R.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 : 1291 - 1320
  • [5] HIERARCHICAL A POSTERIORI ERROR ESTIMATORS FOR THE MIMETIC DISCRETIZATION OF ELLIPTIC PROBLEMS
    Antonietti, Paola F.
    da Veiga, Lourenco Beirao
    Lovadina, Carlo
    Verani, Marco
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 654 - 675
  • [6] A POSTERIORI ERROR ESTIMATORS FOR THE STOKES EQUATIONS-II NON-CONFORMING DISCRETIZATIONS
    VERFURTH, R
    [J]. NUMERISCHE MATHEMATIK, 1991, 60 (02) : 235 - 249
  • [7] Extending Ball B-spline by B-spline
    Liu, Xinyue
    Wang, Xingce
    Wu, Zhongke
    Zhang, Dan
    Liu, Xiangyuan
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2020, 82
  • [8] ON B-SPLINE M-ESTIMATORS IN A SEMIPARAMETRIC REGRESSION MODEL
    SHI Peide (Department of Probability and Statistics
    [J]. Journal of Systems Science & Complexity, 1994, (03) : 270 - 281
  • [9] HIERARCHICAL A POSTERIORI RESIDUAL BASED ERROR ESTIMATORS FOR BILINEAR FINITE ELEMENTS
    Braack, Malte
    Taschenberger, Nico
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (02) : 466 - 480
  • [10] Local asymptotics for b-spline estimators of the varying coefficient model
    Lu, YQ
    Mao, SS
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (05) : 1119 - 1138