beta-Ga2O3 can be cleaved easily, where the (100) surface is the main cleavage surface. This surface encounters local stress concentration during ultra-precision machining and is prone to local fragmentation, resulting in formation of micro-cleavage pits. The effects of different abrasive grit shapes on polishing are studied in order to ensure smooth processing of beta-Ga2O3(100). First, a contact mechanics model for different shapes of abrasive grits and crystal surfaces is established in accordance with the theory of elasticity. Then, the contact mechanism between the abrasive grits and the crystal surfaces is analyzed using a theoretical model. Finally, the feasibility of the theoretical model is verified in experiments. The results show that blunt spherical abrasive grits are more suitable for polishing of beta-Ga2O3(100) than sharp diamond-shaped abrasive grits. Compared to sharp abrasive grits, the crystal surfaces processed using blunt abrasive grits are smoother, with surface roughness (Ra) of approximately 14 nm. During polishing, the sharp and blunt abrasive grits remove brittle and plastic material, respectively. Therefore, blunt abrasive grits are more suitable for the polishing of beta-Ga2O3 than sharp abrasive grits.