Reaction Mechanism of FePS3 Electrodes in All-Solid-State Lithium Secondary Batteries Using Sulfide-Based Solid Electrolytes

被引:13
|
作者
Fujii, Yuta [1 ]
Miura, Akira [2 ]
Rosero-Navarro, Nataly Carolina [2 ]
Mizuguchi, Yoshikazu [3 ]
Moriyoshi, Chikako [4 ]
Kuroiwa, Yoshihiro [4 ]
Higuchi, Mikio [2 ]
Tadanaga, Kiyoharu [2 ]
机构
[1] Hokkaido Univ, Grad Sch Chem Sci & Engn, Sapporo, Hokkaido 0608628, Japan
[2] Hokkaido Univ, Fac Engn, Sapporo, Hokkaido 0608628, Japan
[3] Tokyo Metropolitan Univ, Grad Sch Sci & Engn, Hachioji, Tokyo 1920397, Japan
[4] Hiroshima Univ, Dept Phys Sci, Higashihiroshima 7398526, Japan
基金
日本科学技术振兴机构;
关键词
POSITIVE-ELECTRODE; CATHODE MATERIAL; ION BATTERIES; HIGH-CAPACITY; CRYSTALS; DICHALCOGENIDES; NANOPARTICLES; CELLS; IRON; MN;
D O I
10.1149/2.0191813jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this study, we investigated the reaction mechanism of the FePS3 electrode in all-solid-state lithium secondary batteries that utilized sulfide-based solid electrolytes by X-ray diffraction patterns, X-ray absorption spectra, Raman spectra, and density-functional theory (DFT) calculations. In discharge-charge measurements, the reversible discharge-charge reaction (FePS3 + xLi(+) + xe(-) reversible arrow LixFePS3, 0 <= x <= 1.5) was confirmed. With this reaction, Li+-inserted FePS3 with low crystallinity was formed with the reduction of iron during the discharge cycle, and crystalline FePS3 appeared along with the oxidation of iron during the charge cycle. Raman spectra showed that P2S64- units were not destroyed during this discharge-charge cycle. In the second cycle, the discharge voltage of the batteries that used FePS3 increased relative to that at the first cycle. The reversible change in chemical states of iron and sulfur was confirmed by X-ray absorption. The first-principle calculation explained the experimental results of the change of crystalline phase and the increase in the discharge voltage. Further, the calculation results indicated that not only iron but also sulfur was oxidized and reduced from the first charge cycle onwards. (C) 2018 The Electrochemical Society.
引用
收藏
页码:A2948 / A2954
页数:7
相关论文
共 50 条
  • [1] FePS3 electrodes in all-solid-state lithium secondary batteries using sulfide-based solid electrolytes
    Fujii, Yuta
    Miura, Akira
    Rosero-Navarro, Nataly Carolina
    Higuchi, Mikio
    Tadanaga, Kiyoharu
    ELECTROCHIMICA ACTA, 2017, 241 : 370 - 374
  • [2] Fe-P-S electrodes for all-solid-state lithium secondary batteries using sulfide-based solid electrolytes
    Fujii, Yuta
    Kobayashi, Misaki
    Miura, Akira
    Rosero-Navarro, Nataly Carolina
    Li, Minchan
    Sun, Jianguo
    Kotobuki, Masashi
    Lu, Li
    Tadanaga, Kiyoharu
    JOURNAL OF POWER SOURCES, 2020, 449
  • [3] ALL-SOLID-STATE LITHIUM SECONDARY BATTERIES USING SULFIDE-BASED GLASS CERAMIC ELECTROLYTES
    Tatsumisago, Masahiro
    Hayashi, Akitoshi
    FUNCTIONAL MATERIALS LETTERS, 2008, 1 (01) : 31 - 36
  • [4] All-solid-state lithium secondary batteries using sulfide-based glass-ceramic electrolytes
    Tatsumisago, Masahiro
    Mizuno, Fuminori
    Hayashi, Akitoshi
    JOURNAL OF POWER SOURCES, 2006, 159 (01) : 193 - 199
  • [6] Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries
    Lian, Peng-Jie
    Zhao, Bo-Sheng
    Zhang, Lian-Qi
    Xu, Ning
    Wu, Meng-Tao
    Gao, Xue-Ping
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (36) : 20540 - 20557
  • [7] A review of polymers in sulfide-based hybrid solid-state electrolytes for all-solid-state lithium batteries
    Kim, Minjae
    Seo, Junhyeok
    Suba, Jeanie Pearl Dizon
    Cho, Kuk Young
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (22) : 5475 - 5499
  • [8] Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes
    Wu, Jinghua
    Liu, Sufu
    Han, Fudong
    Yao, Xiayin
    Wang, Chunsheng
    ADVANCED MATERIALS, 2021, 33 (06)
  • [9] Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries
    Xu, J.
    Liu, L.
    Yao, N.
    Wu, F.
    Li, H.
    Chen, L.
    MATERIALS TODAY NANO, 2019, 8
  • [10] Cathodic interface in sulfide-based all-solid-state lithium batteries
    Li, Nana
    Luo, Jiayao
    Zhu, Jinhui
    Zhuang, Xiaodong
    ENERGY STORAGE MATERIALS, 2023, 63