Properties of Definite Bethe-Salpeter Eigenvalue Problems

被引:2
|
作者
Shao, Meiyue [1 ]
Yang, Chao [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
关键词
MINIMIZATION PRINCIPLES; MATRICES; PENCILS; BOUNDS;
D O I
10.1007/978-3-319-62426-6_7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Bethe-Salpeter eigenvalue problem is solved in condense matter physics to estimate the absorption spectrum of solids. It is a structured eigenvalue problem. Its special structure appears in other approaches for studying electron excitation in molecules or solids also. When the Bethe-Salpeter Hamiltonian matrix is definite, the corresponding eigenvalue problem can be reduced to a symmetric eigenvalue problem. However, its special structure leads to a number of interesting spectral properties. We describe these properties that are crucial for developing efficient and reliable numerical algorithms for solving this class of problems.
引用
收藏
页码:91 / 105
页数:15
相关论文
共 50 条
  • [1] Structure-preserving ΓQR and Γ-Lanczos algorithms for Bethe-Salpeter eigenvalue problems
    Guo, Zhen-Chen
    Li, Tiexiang
    Zhou, Ying-Ying
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 341 : 12 - 30
  • [2] Hermitian separability of BFKL eigenvalue in Bethe-Salpeter approach
    Joubat, Mohammad
    Prygarin, Alexander
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (12):
  • [3] DOUBLING ALGORITHM FOR THE DISCRETIZED BETHE-SALPETER EIGENVALUE PROBLEM
    Guo, Zhen-Chen
    Chu, Eric King-Wah
    Lin, Wen-Wei
    MATHEMATICS OF COMPUTATION, 2019, 88 (319) : 2325 - 2350
  • [4] BETHE-SALPETER EQUATION REGARDED AS AN EIGENVALUE EQUATION FOR BOUND-STATE MASSES AND NORMALIZATION CONDITION FOR BETHE-SALPETER AMPLITUDE
    BREITENLOHNER, P
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1971, A 4 (03): : 493 - +
  • [5] THE ANALYTICITY PROPERTIES OF THE BETHE-SALPETER AMPLITUDE
    WATANABE, K
    PROGRESS OF THEORETICAL PHYSICS, 1960, 24 (06): : 1373 - 1376
  • [6] PROPERTIES OF BETHE-SALPETER WAVE FUNCTIONS
    WICK, GC
    PHYSICAL REVIEW, 1954, 95 (02): : 653 - 653
  • [7] PROPERTIES OF BETHE-SALPETER WAVE FUNCTIONS
    WICK, GC
    PHYSICAL REVIEW, 1954, 96 (04): : 1124 - 1134
  • [8] GENERAL PROPERTIES OF BETHE-SALPETER NORMS
    LEIGH, WJ
    NUCLEAR PHYSICS B, 1969, B 14 (03) : 630 - &
  • [9] High performance solution of skew-symmetric eigenvalue problems with applications in solving the Bethe-Salpeter eigenvalue problem
    Penke, Carolin
    Marek, Andreas
    Vorwerk, Christian
    Draxl, Claudia
    Benner, Peter
    PARALLEL COMPUTING, 2020, 96
  • [10] The Bethe-Salpeter Equation
    FIRST PRINCIPLES APPROACHES TO SPECTROSCOPIC PROPERTIES OF COMPLEX MATERIALS, 2014, 347 : 385 - 387