Global Existence of Small Equivariant Wave Maps on Rotationally Symmetric Manifolds
被引:6
|
作者:
D'Ancona, Piero
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Matemat, Piazzale A Moro 2, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Matemat, Piazzale A Moro 2, I-00185 Rome, Italy
D'Ancona, Piero
[1
]
Zhang, Qidi
论文数: 0引用数: 0
h-index: 0
机构:
E China Univ Sci & Technol, Dept Math, Meilong Rd 130, Shanghai 200237, Peoples R ChinaUniv Roma La Sapienza, Dipartimento Matemat, Piazzale A Moro 2, I-00185 Rome, Italy
Zhang, Qidi
[2
]
机构:
[1] Univ Roma La Sapienza, Dipartimento Matemat, Piazzale A Moro 2, I-00185 Rome, Italy
[2] E China Univ Sci & Technol, Dept Math, Meilong Rd 130, Shanghai 200237, Peoples R China
We introduce a class of rotationally invariant manifolds, which we call admissible, on which the wave flow satisfies smoothing and Strichartz estimates. We deduce the global existence of equivariant wave maps from admissible manifolds to general targets, for small initial data of critical regularity H-n/2. The class of admissible manifolds includes in particular asymptotically flat manifolds and perturbations of real hyperbolic spaces H-n for n >= 3.