Global Existence of Small Equivariant Wave Maps on Rotationally Symmetric Manifolds

被引:6
|
作者
D'Ancona, Piero [1 ]
Zhang, Qidi [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, Piazzale A Moro 2, I-00185 Rome, Italy
[2] E China Univ Sci & Technol, Dept Math, Meilong Rd 130, Shanghai 200237, Peoples R China
关键词
CAUCHY-PROBLEM; SCHRODINGER-EQUATIONS; HARMONIC MAPS; REGULARITY; STRICHARTZ; SPACE; SINGULARITIES; POSEDNESS; OPERATOR; ROUGH;
D O I
10.1093/imrn/rnv152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a class of rotationally invariant manifolds, which we call admissible, on which the wave flow satisfies smoothing and Strichartz estimates. We deduce the global existence of equivariant wave maps from admissible manifolds to general targets, for small initial data of critical regularity H-n/2. The class of admissible manifolds includes in particular asymptotically flat manifolds and perturbations of real hyperbolic spaces H-n for n >= 3.
引用
收藏
页码:978 / 1025
页数:48
相关论文
共 50 条