Negative Differential Resistance in Spin-Crossover Molecular Devices

被引:8
|
作者
Li, Dongzhe [1 ,2 ]
Tong, Yongfeng [3 ]
Bairagi, Kaushik [3 ]
Kelai, Massine [3 ]
Dappe, Yannick J. [4 ]
Lagoute, Jerome [3 ]
Girard, Yann [3 ]
Rousset, Sylvie [3 ]
Repain, Vincent [3 ]
Barreteau, Cyrille [4 ]
Brandbyge, Mads [5 ]
Smogunov, Alexander [4 ]
Bellec, Amandine [3 ]
机构
[1] Tech Univ Denmark, Dept Phys, DK-2800 Kongens Lyngby, Denmark
[2] CEMES, Univ Toulouse, CNRS, F-31055 Toulouse, France
[3] Univ Paris Cite, CNRS, Lab Mat & Phenomenes Quant, UMR7162, F-75013 Paris, France
[4] Univ Paris Saclay, CEA, CNRS, SPEC, F-91191 Gif Sur Yvette, France
[5] Tech Univ Denmark, Ctr Nanostruct Graphene, DK-2800 Kongens Lyngby, Denmark
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2022年 / 13卷 / 32期
基金
新加坡国家研究基金会;
关键词
BISTABILITY; CONDUCTANCE; JUNCTIONS;
D O I
10.1021/acs.jpclett.2c01934
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate, based on low-temperature scan-ning tunneling microscopy (STM) and spectroscopy, a pro-nounced nega t i v e differential resistance (NDR) in spin-crossover (SCO) molecular devices, where a FeI I SCO molecule is deposited on surfaces. The STM measurements reveal that the NDR is robust with respect to substrate materials, temperature, and the number of SCO layers. This indicates that the NDR is intrinsically related to the electronic structure of the SCO molecule. Experimental results are supported by density functional theory (DFT) with non-equilibr i u m Green's function (NEGF) calculations and a generic theoretical model . While the DFT+NEGF calculations reproduce NDR for a special atomically sharp STM tip, the effect is attributed to the energy-dependent tip density of states rather t h a n the molecule itself . We, therefore, propose a Coulomb blockade model invol v i n g three molecular orbitals with very different spatial localization as suggested by the molecular electronic structure.
引用
收藏
页码:7514 / 7520
页数:7
相关论文
共 50 条
  • [1] Spin-crossover molecular materials
    Kahn, O
    [J]. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1996, 1 (04): : 547 - 554
  • [2] Sublimable Spin-Crossover Complexes: From Spin-State Switching to Molecular Devices
    Kumar, Kuppusamy Senthil
    Ruben, Mario
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (14) : 7502 - 7521
  • [3] A Multiferroic Spin-Crossover Molecular Crystal
    Ai, Yong
    Hu, Zhao-Bo
    Weng, Yan-Ran
    Peng, Hang
    Qi, Jun-Chao
    Chen, Xiao-Gang
    Lv, Hui-Peng
    Song, Xian-Jiang
    Ye, Heng-Yun
    Xiong, Ren-Gen
    Liao, Wei-Qiang
    [J]. ADVANCED MATERIALS, 2024, 36 (39)
  • [4] The spin-crossover phenomenon:: towards molecular memories
    Bousseksou, A
    Molnár, G
    [J]. COMPTES RENDUS CHIMIE, 2003, 6 (8-10) : 1175 - 1183
  • [5] Cooperative Phenomena in Spin-Crossover Molecular Crystals
    Gudyma, Iurii
    Maksymov, Artur
    Polonska, Kateryna
    [J]. NANOCHEMISTRY, BIOTECHNOLOGY, NANOMATERIALS, AND THEIR APPLICATIONS, 2018, 214 : 427 - 441
  • [6] Bistable Spin-Crossover Nanoparticles for Molecular Electronics
    Torres-Cavanillas, Ramon
    Gavara-Edo, Miguel
    Coronado, Eugenio
    [J]. ADVANCED MATERIALS, 2024, 36 (01)
  • [7] Effect of compression in molecular spin-crossover chains
    Gudyma, A.
    Gudyma, Iu.
    [J]. Fizika Nizkikh Temperatur, 2021, 47 (06): : 491 - 500
  • [8] Effect of compression in molecular spin-crossover chains
    Gudyma, A.
    Gudyma, Iu.
    [J]. LOW TEMPERATURE PHYSICS, 2021, 47 (06) : 457 - 465
  • [9] Study on molecular devices with negative differential resistance
    Mahmoud, Ahmed
    Lugli, Paolo
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (03)
  • [10] Negative differential resistance molecular devices.
    Wang, W
    Chen, J
    Reed, MA
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U323 - U323