Convolution theorem involving n-dimensional windowed fractional Fourier transform

被引:14
|
作者
Gao, Wenbiao [1 ,2 ]
Li, Bingzhao [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1007/s11432-020-2909-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Convolution theorem involving n-dimensional windowed fractional Fourier transform
    Wenbiao Gao
    Bingzhao Li
    [J]. Science China Information Sciences, 2021, 64
  • [2] Convolution theorem involving n-dimensional windowed fractional Fourier transform
    Wenbiao GAO
    Bingzhao LI
    [J]. Science China(Information Sciences), 2021, 64 (06) : 244 - 246
  • [3] The Convolution Theorem Involving Windowed Free Metaplectic Transform
    Cui, Manjun
    Zhang, Zhichao
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (04)
  • [4] A convolution and product theorem for the fractional Fourier transform
    Zayed, AI
    [J]. IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (04) : 101 - 103
  • [5] Generalized convolution theorem associated with fractional Fourier transform
    Shi, Jun
    Sha, Xuejun
    Song, Xiaocheng
    Zhang, Naitong
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2014, 14 (13): : 1340 - 1351
  • [6] Wavelet Convolution Product Involving Fractional Fourier Transform
    S. K. Upadhyay
    Jitendra Kumar Dubey
    [J]. Fractional Calculus and Applied Analysis, 2017, 20 : 173 - 189
  • [7] WAVELET CONVOLUTION PRODUCT INVOLVING FRACTIONAL FOURIER TRANSFORM
    Upadhyay, S. K.
    Dubey, Jitendra Kumar
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (01) : 173 - 189
  • [8] Convolution theorem for the windowed linear canonical transform
    Gao, Wen-Biao
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024,
  • [9] Calculating the n-dimensional fast Fourier transform
    Tutatchikov V.S.
    Kiselev O.I.
    Noskov M.V.
    [J]. Pattern Recognition and Image Analysis, 2013, 23 (3) : 429 - 433
  • [10] Sampling theorem for two dimensional fractional Fourier transform
    Zayed, Ahmed, I
    [J]. SIGNAL PROCESSING, 2021, 181