On canonical metrics on Cartan-Hartogs domains

被引:25
|
作者
Feng, Zhiming [1 ]
Tu, Zhenhan [2 ]
机构
[1] Leshan Normal Univ, Sch Math & Informat Sci, Leshan 614000, Sichuan, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Bounded symmetric domains; Cartan-Hartogs domains; Bergman kernels; Kahler metrics; TIAN-YAU-ZELDITCH; ASYMPTOTIC-EXPANSION; KAHLER-MANIFOLDS; BERGMAN KERNELS; HOLOMORPHIC-FUNCTIONS; SYMMETRIC DOMAINS; HILBERT-SPACES; QUANTIZATION; THEOREM;
D O I
10.1007/s00209-014-1316-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Cartan-Hartogs domains are defined as a class of Hartogs type domains over irreducible bounded symmetric domains. The purpose of this paper is twofold. Firstly, for a Cartan-Hartogs domain endowed with the canonical metric we obtain an explicit formula for the Bergman kernel of the weighted Hilbert space of square integrable holomorphic functions on with the weight (where is a globally defined Kahler potential for ) for , and, furthermore, we give an explicit expression of the Rawnsley's -function expansion for Secondly, using the explicit expression of the Rawnsley's -function expansion, we show that the coefficient of the Rawnsley's -function expansion for the Cartan-Hartogs domain is constant on if and only if is biholomorphically isometric to the complex hyperbolic space. So we give an affirmative answer to a conjecture raised by M. Zedda.
引用
收藏
页码:301 / 320
页数:20
相关论文
共 50 条