Maximal Interaction Two-Mode Clustering

被引:8
|
作者
Schepers, Jan [1 ,2 ]
Bock, Hans-Hermann [3 ]
Van Mechelen, Iven [2 ]
机构
[1] Maastricht Univ, Maastricht, Netherlands
[2] Katholieke Univ Leuven, Leuven, Belgium
[3] Rhein Westfal TH Aachen, Aachen, Germany
关键词
Two-mode data; Biclustering; Capturing row by column interaction; Clustering criteria; Probabilistic clustering model; Classification likelihood; GENE-ENVIRONMENT INTERACTIONS; STATISTICAL-ANALYSIS; YIELD TRIALS; MODELS; DYNAMICS; AMMI; COMPLEXITIES; PERSONALITY; STRATEGIES; GGE;
D O I
10.1007/s00357-017-9226-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Most classical approaches for two-mode clustering of a data matrix are designed to attain homogeneous row by column clusters (blocks, biclusters), that is, biclusters with a small variation of data values within the blocks. In contrast, this article deals with methods that look for a biclustering with a large interaction between row and column clusters. Thereby an aggregated, condensed representation of the existing interaction structure is obtained, together with corresponding row and column clusters, which both allow a parsimonious visualization and interpretation. In this paper we provide a statistical justification, in terms of a probabilistic model, for a two-mode interaction clustering criterion that has been proposed by Bock (1980). Furthermore, we show that maximization of this criterion is equivalent to minimizing the classical least-squares two-mode partitioning criterion for the double-centered version of the data matrix. The latter implies that the interaction clustering criterion can be optimized by applying classical two-mode partitioning algorithms. We illustrate the usefulness of our approach for the case of an empirical data set from personality psychology and we compare this method with other biclustering approaches where interactions play a role.
引用
收藏
页码:49 / 75
页数:27
相关论文
共 50 条
  • [11] Cluster Validity Measures for Fuzzy Two-Mode Clustering
    Ferraro, Maria Brigida
    Giordani, Paolo
    Vichi, Maurizio
    BUILDING BRIDGES BETWEEN SOFT AND STATISTICAL METHODOLOGIES FOR DATA SCIENCE, 2023, 1433 : 144 - 150
  • [12] Two-mode clustering through profiles of regions and sectors
    Haedo, Christian
    Mouchart, Michel
    EMPIRICAL ECONOMICS, 2022, 63 (04) : 1971 - 1996
  • [13] Scalability of parallel genetic algorithm for two-mode clustering
    Deb, Briti
    Srirama, Satish Narayana
    International Journal of Computers and Applications, 2014, 94 (14) : 23 - 26
  • [14] A class of two-mode clustering algorithms in a fuzzy setting
    Ferraro, Maria Brigida
    Giordani, Paolo
    Vichi, Maurizio
    ECONOMETRICS AND STATISTICS, 2021, 18 : 63 - 78
  • [15] Two-mode clustering through profiles of regions and sectors
    Christian Haedo
    Michel Mouchart
    Empirical Economics, 2022, 63 : 1971 - 1996
  • [16] Generating correlated two-mode states via the resonant interaction of Ξ-type atoms with a two-mode field
    Zhong, Zhi-Rong
    PHYSICS LETTERS A, 2007, 368 (1-2) : 29 - 33
  • [17] Two-mode clustering of genotype by trait and genotype by environment data
    J. A. Hageman
    M. Malosetti
    F. A. van Eeuwijk
    Euphytica, 2012, 183 : 349 - 359
  • [18] Genetic algorithm based two-mode clustering of metabolomics data
    J. A. Hageman
    R. A. van den Berg
    J. A. Westerhuis
    M. J. van der Werf
    A. K. Smilde
    Metabolomics, 2008, 4 : 141 - 149
  • [19] Two-mode clustering of genotype by trait and genotype by environment data
    Hageman, J. A.
    Malosetti, M.
    van Eeuwijk, F. A.
    EUPHYTICA, 2012, 183 (03) : 349 - 359
  • [20] Genetic algorithm based two-mode clustering of metabolomics data
    Hageman, J. A.
    van den Berg, R. A.
    Westerhuis, J. A.
    van der Werf, M. J.
    Smilde, A. K.
    METABOLOMICS, 2008, 4 (02) : 141 - 149