NIKOL'SKII INEQUALITIES FOR LORENTZ SPACES

被引:30
|
作者
Ditzian, Z. [1 ]
Prymak, A. [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2T1, Canada
[2] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1216/RMJ-2010-40-1-209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A general approach is given for establishing Nikol'skii-type inequalities for various Lorentz spaces. The key ingredient for the proof is either a Bernstein-type inequality or a Remez-type inequality. Applications of our results to trigonometric polynomials on the torus T(d), algebraic polynomials on [-1, 1], spherical harmonic polynomials on the unit sphere S(d-1) in R(d), algebraic polynomials on R with Freud's weights and others will be presented.
引用
下载
收藏
页码:209 / 223
页数:15
相关论文
共 50 条
  • [1] Nikol’skii inequalities for Lorentz–Zygmund spaces
    Leo R. Ya. Doktorski
    Dmitrij Gendler
    Boletín de la Sociedad Matemática Mexicana, 2019, 25 : 659 - 672
  • [2] Nikol'skii inequalities for Lorentz-Zygmund spaces
    Doktorski, Leo R. Ya
    Gendler, Dmitrij
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (03): : 659 - 672
  • [3] Nikol'skii-Type Inequalities for Trigonometric Polynomials for Lorentz-Zygmund Spaces
    Doktorski, Leo R. Ya
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [4] Nikol’skii-type inequalities for entire functions of exponential type in Lorentz–Zygmund spaces
    Leo R. Ya. Doktorski
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [5] Nikol'skii-type inequalities for entire functions of exponential type in Lorentz-Zygmund spaces
    Doktorski, Leo R. Ya
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (01):
  • [6] The ortho-diameters of Nikol’skii and Besov classes in the Lorentz spaces
    G. A. Akishev
    Russian Mathematics, 2009, 53 (2) : 21 - 29
  • [7] On M–Term Approximations of the Nikol'skii–Besov Class in the Lorentz Spaces
    G.Akishev
    Analysis in Theory and Applications, 2017, (03) : 267 - 286
  • [8] The Ortho-Diameters of Nikol'skii and Besov Classes in the Lorentz Spaces
    Akishev, G. A.
    RUSSIAN MATHEMATICS, 2009, 53 (02) : 21 - 29
  • [9] On Nikol'skii Inequalities for Domains in Rd
    Ditzian, Z.
    Prymak, A.
    CONSTRUCTIVE APPROXIMATION, 2016, 44 (01) : 23 - 51
  • [10] COMPARISON OF MORREY SPACES AND NIKOL'SKII SPACES
    Burenkov, V. O.
    Guliyev, V. S.
    Tararykova, T., V
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (01): : 9 - 20