Hypergraphs, Characteristic Polynomials and the Ihara Zeta Function

被引:0
|
作者
Ren, Peng [1 ]
Aleksic, Tatjana [2 ]
Wilson, Richard C. [1 ]
Hancock, Edwin R. [1 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
[2] Univ Kragujevac, Fac Sci, Kragujevac, Serbia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we make a characteristic polynomial analysis on hypergraphs for the purpose of clustering. Our starting point is the Ihara zeta function [8] which captures the cycle structure for hypergraphs. The Ihara zeta function for a hypergraph can be expressed in a determinant form as the reciprocal of the characteristic polynomial of the adjacency matrix for a transformed graph representation. Our hypergraph characterization is based on the coefficients of the characteristic polynomial, and can be used to construct feature vectors for hypergraphs. In the experimental evaluation, we demonstrate the effectiveness of the proposed characterization for clustering hypergraphs.
引用
收藏
页码:369 / +
页数:2
相关论文
共 50 条
  • [1] A polynomial characterization of hypergraphs using the Ihara zeta function
    Ren, Peng
    Aleksic, Tatjana
    Wilson, Richard C.
    Hancock, Edwin R.
    PATTERN RECOGNITION, 2011, 44 (09) : 1941 - 1957
  • [2] Kernelising the Ihara Zeta Function
    Aziz, Furqan
    Wilson, Richard C.
    Hancock, Edwin R.
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS: 14TH INTERNATIONAL CONFERENCE, CAIP 2011, PT I, 2011, 6854 : 219 - 227
  • [3] The Ihara zeta function of the infinite grid
    Clair, Bryan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (02):
  • [4] IHARA ZETA FUNCTION OF DUMBBELL GRAPHS
    Kwon, Sanghoon
    Park, Jung-Hyeon
    KOREAN JOURNAL OF MATHEMATICS, 2018, 26 (04): : 741 - 746
  • [5] Edge reconstruction of the Ihara zeta function
    Cornelissen, Gunther
    Kool, Janne
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [6] THE IHARA ZETA FUNCTION FOR INFINITE GRAPHS
    Lenz, Daniel
    Pogorzelski, Felix
    Schmidt, Marcel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (08) : 5687 - 5729
  • [7] Enumeration of graphs with the same Ihara zeta function
    Setyadi, A.
    Storm, C. K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) : 564 - 572
  • [8] A TRACE ON FRACTAL GRAPHS AND THE IHARA ZETA FUNCTION
    Guido, Daniele
    Isola, Tommaso
    Lapidus, Michel L.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (06) : 3041 - 3070
  • [9] Graph Characteristics from the Ihara Zeta Function
    Ren, Peng
    Wilson, Richard C.
    Hancock, Edwin R.
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2008, 5342 : 257 - 266
  • [10] Pattern Vectors from the Ihara Zeta Function
    Ren, Peng
    Wilson, Richard C.
    Hancock, Edwin R.
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2495 - 2498