A particle filtering-based approach for remaining useful life predication of rolling element bearings

被引:0
|
作者
Li, Naipeng [1 ]
Lei, Yaguo [1 ]
Liu, Zongyao [1 ]
Lin, Jing [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, 28 Xianning West Rd, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Remaining useful life prediction; Degradation indicator; Particle filtering; Parameter intialization; Rolling element bearing;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rolling element bearings are one of the most widely used components in rotating machinery. However, they are also the components which frequently suffer from damage. Remaining useful life (RUL) prediction of rolling element bearings has received considerable attention, since it can avoid failure risks, and ensure availability, reliability and security. Model-based methods are commonly used in RUL prediction because of their high accuracy in long-time prediction. In model-based methods, a degradation indicator which describes the whole degradation process of bearings, however, is very critical but difficult to be extracted. A model function, used to predict the evolution trend and the RUL of bearings, is difficult to develop as well. In this paper, a particle filtering (PF)-based approach is developed to predict the RUL of rolling element bearings. In this approach, two modules are included, i.e. indicator calculation module and PF-based prediction module. In the first module, a new degradation indicator is calculated based on correlation matrix clustering and weight algorithm. This indicator fuses different characteristics of multiple features, includes more fault information and therefore has a better prediction tendency. In the second module, a PF-based approach is proposed to predict the RUL of bearings. Different from the traditional PF-based approach, a new algorithm of parameter initialization is introduced to calculate the initial parameters of the state space model. Experimental data of rolling element bearings are used to demonstrate the effectiveness of this approach. For comparison, another RUL prediction approach based on adaptive neuro-fuzzy inference system (ANFIS) is also utilized to process the experimental data. The result shows that the proposed approach can effectively calculate the appropriate degradation indicator, initialize the model parameters and perform better in RUL prediction than the ANFIS-based approach for rolling element bearings.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Comprehensive Remaining Useful Life Prediction for Rolling Element Bearings Based on Time-Varying Particle Filtering
    Cui, Lingli
    Li, Wenjie
    Wang, Xin
    Zhao, Dezun
    Wang, Huaqing
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [2] Auxiliary Particle Filtering-Based Estimation of Remaining Useful Life of IGBT
    Haque, Moinul Shahidul
    Choi, Seungdeog
    Baek, Jeihoon
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (03) : 2693 - 2703
  • [3] A probabilistic approach to remaining useful life prediction of rolling element bearings
    Prakash, Guru
    Narasimhan, Sriram
    Pandey, Mahesh D.
    [J]. STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2019, 18 (02): : 466 - 485
  • [4] Predicting the Remaining Useful Life of Rolling Element Bearings
    Jantunen, Erkki
    Hooghoudt, Jan-Otto
    Yang, Yi
    McKay, Mark
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2018, : 2035 - 2040
  • [5] A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings
    Wang, Biao
    Lei, Yaguo
    Li, Naipeng
    Li, Ningbo
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2020, 69 (01) : 401 - 412
  • [6] Remaining Useful Life Prediction of Rolling Element Bearings Based on Different Degradation Stages and Particle Filter
    Li Q.
    Ma B.
    Liu J.
    [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36 (03): : 432 - 441
  • [7] Remaining Useful Life Prediction of Rolling Element Bearings Based on Different Degradation Stages and Particle Filter
    LI Qing
    MA Bo
    LIU Jiameng
    [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36 (03) : 432 - 441
  • [8] Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model
    Liu, Jingna
    Hao, Rujiang
    Liu, Qiang
    Guo, Wenwu
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (04) : 1567 - 1578
  • [9] Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model
    Jingna Liu
    Rujiang Hao
    Qiang Liu
    Wenwu Guo
    [J]. International Journal of Machine Learning and Cybernetics, 2023, 14 : 1567 - 1578
  • [10] Remaining Useful Life Prediction of Rolling Element Bearings Based on Unscented Kalman Filter
    Qi, Junyu
    Mauricio, Alexadre
    Sarrazin, Mathieu
    Janssens, Karl
    Gryllias, Konstantinos
    [J]. ADVANCES IN CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO 2018), 2019, 15 : 111 - 121