Expected Distance from a Random Point in the Unit Interval Solution

被引:0
|
作者
Fitzsimmons, Patrick J. [1 ]
机构
[1] Univ Calif San Diego, San Diego, CA 92103 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2021年 / 128卷 / 06期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:569 / 569
页数:1
相关论文
共 50 条
  • [1] Expected Distance from a Random Point in the Unit Interval
    Korus, Peter
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2021, 128 (06): : 568 - 569
  • [2] Expected distance based on random walks
    Camby, E.
    Caporossi, G.
    Paiva, M. H. M.
    Segatto, M. E. V.
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (02) : 618 - 629
  • [3] Expected distance based on random walks
    E. Camby
    G. Caporossi
    M. H. M. Paiva
    M. E. V. Segatto
    [J]. Journal of Mathematical Chemistry, 2018, 56 : 618 - 629
  • [4] DISTANCE FROM A RANDOM POINT TO NEAREST POINT OF A CLOSELY PACKED LATTICE
    HOLGATE, P
    [J]. BIOMETRIKA, 1965, 52 : 261 - &
  • [5] Expected invariants of simplicial complexes obtained from random point samples
    Taejin Paik
    Otto van Koert
    [J]. Archiv der Mathematik, 2023, 120 : 417 - 429
  • [6] Expected invariants of simplicial complexes obtained from random point samples
    Paik, Taejin
    van Koert, Otto
    [J]. ARCHIV DER MATHEMATIK, 2023, 120 (04) : 417 - 429
  • [7] Drawing Random Floating-point Numbers from an Interval
    Goualard, Frederic
    [J]. ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2022, 32 (03):
  • [8] Point and expected interval availability analysis with stationarity detection
    Abdallah, H
    Marie, R
    Sericola, B
    [J]. COMPUTERS & OPERATIONS RESEARCH, 1999, 26 (03) : 211 - 218
  • [9] On the arrangement of point sets in the unit interval
    Kritzer, Peter
    Larcher, Gerhard
    [J]. MANUSCRIPTA MATHEMATICA, 2013, 140 (3-4) : 377 - 391
  • [10] On the arrangement of point sets in the unit interval
    Peter Kritzer
    Gerhard Larcher
    [J]. Manuscripta Mathematica, 2013, 140 : 377 - 391