Close-to-zero eigenvalues of the rooted product of graphs

被引:1
|
作者
Rosenfeld, Vladimir R. [1 ]
Yang, Yujun [2 ]
机构
[1] Ariel Univ, Dept Comp Sci & Math, IL-4070000 Ariel, Israel
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Rooted product of graphs; Median eigenvalues; Energy gap;
D O I
10.1007/s10910-021-01250-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The construction of vertex-decorated graphs can be used to produce derived graphs with specific eigenvalues from undecorated graphs, which themselves do not have such eigenvalues. An instance of a decorated graph is the rooted productG(H) of graphs G and H. Let F = (V, E) be a molecular graph with the vertex set V and the edge set E(vertical bar V vertical bar=n;vertical bar E vertical bar = m), and let n(+) = n(-)(n(+) + n(-)= n), where n(+) and n(-) are the numbers of positive and negative eigenvalues, respectively. Then, in the spectrum of the eigenvalues of F, two minimum-modulus eigenvalues, positive lambda(+) and negative lambda(-), are of special interest because the value delta=lambda(+)-lambda(-) determines the energy gap. In quantum chemistry, the energy gap delta is associated with the energy of an electron transfer from the highest occupied molecular orbital to the lowest unoccupied molecular orbital of a molecule. As an example, we consider obtaining a (molecular) graph F=G(H) whose median eigenvalues lambda(+) and lambda(-) are predictably close to 0.
引用
收藏
页码:1526 / 1535
页数:10
相关论文
共 50 条
  • [1] Close-to-zero eigenvalues of the rooted product of graphs
    Vladimir R. Rosenfeld
    Yujun Yang
    Journal of Mathematical Chemistry, 2021, 59 : 1526 - 1535
  • [2] Rooted Product and Restricted Rooted Product of Soft Directed Graphs
    Jose, Jinta
    George, Bobin
    Thumbakara, Rajesh K.
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2024, 20 (02) : 345 - 363
  • [3] On the Wiener index of rooted product of graphs
    Heydari, Abbas
    Taeri, Bijan
    ARS COMBINATORIA, 2013, 111 : 257 - 264
  • [4] Double domination in rooted product graphs
    Cabrera-Martinez, Abel
    Estrada-Moreno, Alejandro
    DISCRETE APPLIED MATHEMATICS, 2023, 339 : 127 - 135
  • [5] Partition dimension of rooted product graphs
    Monica, Mohan Chris
    Santhakumar, Samivel
    DISCRETE APPLIED MATHEMATICS, 2019, 262 : 138 - 147
  • [6] Italian Domination in Rooted Product Graphs
    Hernandez-Ortiz, R.
    Montejano, L. P.
    Rodriguez-Velazquez, J. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (01) : 497 - 508
  • [7] Secure domination in rooted product graphs
    Rangel Hernández-Ortiz
    Luis Pedro Montejano
    Juan Alberto Rodríguez-Velázquez
    Journal of Combinatorial Optimization, 2021, 41 : 401 - 413
  • [8] Secure domination in rooted product graphs
    Hernandez-Ortiz, Rangel
    Montejano, Luis Pedro
    Rodriguez-Velazquez, Juan Alberto
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (02) : 401 - 413
  • [9] Total Domination in Rooted Product Graphs
    Cabrera Martinez, Abel
    Rodriguez-Velazquez, Juan A.
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 11
  • [10] Italian Domination in Rooted Product Graphs
    R. Hernández-Ortiz
    L. P. Montejano
    J. A. Rodríguez-Velázquez
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 497 - 508