On the computation of relative rotations and geometric phases in the motions of rigid bodies

被引:5
|
作者
O'Reilly, OM [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
D O I
10.1115/1.2789008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper expressions are established for certain relative rotations which arise in motions of rigid bodies. A comparison of these results with existing relations for geometric phases in the motions of rigid bodies provides alternative expressions of, and computational methods for, the relative rotation. The computational aspects are illustrated using several examples from rigid-body dynamics: namely, the moment-free motion of a rigid body, rolling disks, and sliding disks.
引用
收藏
页码:969 / 974
页数:6
相关论文
共 50 条
  • [1] GEOMETRIC PHASES IN THE MOTION OF RIGID BODIES
    LEVI, M
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 122 (03) : 213 - 229
  • [2] On the relative motions of two rigid bodies at a compliant contact: Application to granular media
    Kuhn, MR
    Bagi, K
    MECHANICS RESEARCH COMMUNICATIONS, 2005, 32 (04) : 463 - 480
  • [3] COMPUTATION OF RELATIVE ROTATIONS IN SPIRAL HORSESHOES
    McRobie, F. A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (01): : 211 - 214
  • [4] Wigner rotations, Bargmann invariants and geometric phases
    Mukunda, N
    Aravind, PK
    Simon, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (09): : 2347 - 2370
  • [5] A new approach to the analysis of free rotations of rigid bodies
    Zhilin, PA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 (04): : 187 - 204
  • [6] On unilaterally constrained motions of rigid bodies systems
    Li, Hongbo
    Applied Mathematics and Mechanics (English Edition), 1996, 17 (10): : 939 - 944
  • [7] NOTE ON COUPLED MOTIONS OF VORTICES AND RIGID BODIES
    KOILLER, J
    PHYSICS LETTERS A, 1987, 120 (08) : 391 - 395
  • [9] GEOMETRIC PHASES AND TOPOLOGICAL QUANTUM COMPUTATION
    Vedral, Vlatko
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (01) : 1 - 23
  • [10] Geometric Spectral Algorithms for the Simulation of Rigid Bodies
    Li, Yiqun
    Meiramgul, Razikhova
    Chen, Jiankui
    Yin, Zhouping
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (12):