Principal kinematic formulas for germs of closed definable sets

被引:1
|
作者
Dutertre, Nicolas [1 ]
机构
[1] Univ Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000 Angers, France
关键词
Kinematic formulas; Definable sets; Lipschitz-Killing curvatures; Polar invariants; REAL EQUISINGULARITY; CURVATURES; TOPOLOGY;
D O I
10.1016/j.aim.2022.108251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two principal kinematic formulas for germs of closed definable sets in R-n, that generalize the Cauchy-Crofton formula for the density due to Comte and the infinitesimal linear kinematic formula due to the author. In this setting, we do not integrate on the space of euclidean motions SO(n) x R-n, but on the manifold SO(n) x Sn-1. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:54
相关论文
共 50 条
  • [1] On Σ1-definable closed unbounded sets
    Ben-Neria, Omer
    Luecke, Philipp
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025,
  • [2] Definable sets in algebraically closed valued fields: elimination of imaginaries
    Haskell, Deirdre
    Hrushovski, Ehud
    Macpherson, Dugald
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 597 : 175 - 236
  • [3] AUTOMORPHISMS DEFINABLE BY FORMULAS
    GRANT, J
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 44 (01) : 107 - 115
  • [4] Kinematic formulas for sets defined by differences of convex functions
    Fu, Joseph H. G.
    Pokorny, Dusan
    Rataj, Jan
    ADVANCES IN MATHEMATICS, 2017, 311 : 796 - 832
  • [5] Definable Elements of Definable Borel Sets
    V. G. Kanovei
    V. A. Lyubetsky
    Mathematical Notes, 2019, 105 : 684 - 693
  • [6] Definable Elements of Definable Borel Sets
    Kanovei, V. G.
    Lyubetsky, V. A.
    MATHEMATICAL NOTES, 2019, 105 (5-6) : 684 - 693
  • [7] Definable principal subcongruences
    Basker K.A.
    Wang J.
    algebra universalis, 2002, 47 (2) : 145 - 151
  • [8] Definable principal subcongruences
    Baker, KA
    Wang, J
    ALGEBRA UNIVERSALIS, 2002, 47 (02) : 145 - 151
  • [9] Radiality of definable sets
    Welliaveetil, John
    ADVANCES IN MATHEMATICS, 2020, 371
  • [10] Definable boolean combinations of open sets are boolean combinations of open definable sets
    Dougherty, R
    Miller, C
    ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (04) : 1347 - 1350