Fitting jump models

被引:35
|
作者
Bemporad, Alberto [1 ]
Breschi, Valentina [2 ]
Piga, Dario [3 ]
Boyd, Stephen P. [4 ]
机构
[1] IMT Sch Adv Studies Lucca, Piazza San Francesco 19, I-55100 Lucca, Italy
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Piazza L Da Vinci 32, I-20133 Milan, Italy
[3] Dalle Molle Inst Artificial Intelligence Res USI, Galleria 2,Via Cantonale 2c, CH-6928 Manno, Switzerland
[4] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
Model regression; Mode estimation; Jump models; Hidden Markov models; Piecewise affine models; IDENTIFICATION;
D O I
10.1016/j.automatica.2018.06.022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We describe a new framework for fitting jump models to a sequence of data. The key idea is to alternate between minimizing a loss function to fit multiple model parameters, and minimizing a discrete loss function to determine which set of model parameters is active at each data point. The framework is quite general and encompasses popular classes of models, such as hidden Markov models and piecewise affine models. The shape of the chosen loss functions to minimize determines the shape of the resulting jump model. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 50 条
  • [1] Fitting jump additive models
    Kang, Yicheng
    Shi, Yueyong
    Jiao, Yuling
    Li, Wendong
    Xiang, Dongdong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 162
  • [2] A REVERSIBLE JUMP MCMC ALGORITHM FOR BAYESIAN CURVE FITTING BY USING SMOOTH TRANSITION REGRESSION MODELS
    Sanquer, Matthieu
    Chatelain, Florent
    El-Guedri, Mabrouka
    Martin, Nadine
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3960 - 3963
  • [3] Gaussian mixture PHD filter for jump Markov models based on best-fitting Gaussian approximation
    Li, Wenling
    Jia, Yingmin
    [J]. SIGNAL PROCESSING, 2011, 91 (04) : 1036 - 1042
  • [4] Fitting data to models
    Small, GW
    Shaffer, RE
    [J]. ANALYTICAL CHEMISTRY, 1996, 68 (11) : A368 - A369
  • [5] Fitting zodiacal models
    Wright, EL
    [J]. EXTRAGALACTIC INFRARED BACKGROUND AND ITS COSMOLOGICAL IMPLICATIONS, 2001, (204): : 157 - 160
  • [6] FITTING LANGMUIR MODELS
    KATTI, PS
    BETNE, PK
    KATTI, SK
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 206 : 27 - ANYL
  • [7] Testing for the presence of jump components in jump diffusion models
    Wang, Bin
    Zheng, Xu
    [J]. JOURNAL OF ECONOMETRICS, 2022, 230 (02) : 483 - 509
  • [8] Curve fitting and jump detection on nonparametric regression with missing data
    Li, Qianyi
    Li, Jianbo
    Cheng, Yongran
    Zhang, Riquan
    [J]. JOURNAL OF APPLIED STATISTICS, 2023, 50 (04) : 963 - 983
  • [9] Adaptive tempered reversible jump algorithm for Bayesian curve fitting
    Tian, Zhiyao
    Lee, Anthony
    Zhou, Shunhua
    [J]. INVERSE PROBLEMS, 2024, 40 (04)
  • [10] Is a pure jump process fitting the high frequency data better than a jump-diffusion process?
    Kong, Xin-Bing
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (02) : 315 - 320