Random k-labelsets:: An ensemble method for multilabel classification

被引:0
|
作者
Tsoumakas, Grigorios [1 ]
Vlahavas, Ioannis [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an ensemble method for multilabel classification. The RAndom k-labELsets (RAKEL) algorithm constructs each member of the ensemble by considering a small random subset of labels and learning a single-label classifier for the prediction of each element in the powerset of this subset. In this way, the proposed algorithm aims to take into account label correlations using single-label classifiers that are applied on subtasks with manageable number of labels and adequate number of examples per label. Experimental results on common multilabel domains involving protein, document and scene classification show that better performance can be achieved compared to popular multilabel classification approaches.
引用
收藏
页码:406 / +
页数:3
相关论文
共 50 条
  • [1] Random k-Labelsets for Multilabel Classification
    Tsoumakas, Grigorios
    Katakis, Ioannis
    Vlahavas, Ioannis
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2011, 23 (07) : 1079 - 1089
  • [2] Calibrated k-labelsets for Ensemble Multi-label Classification
    Gharroudi, Ouadie
    Elghazel, Haytham
    Aussem, Alex
    [J]. NEURAL INFORMATION PROCESSING, PT I, 2015, 9489 : 573 - 582
  • [3] Active k-labelsets ensemble for multi-label classification
    Wang, Ran
    Kwong, Sam
    Wang, Xu
    Jia, Yuheng
    [J]. PATTERN RECOGNITION, 2021, 109
  • [4] Mutual Information Based K-Labelsets Ensemble for Multi-Label Classification
    Wang, Ran
    Kwong, Sam
    Jia, Yuheng
    Huang, Zhiqi
    Wu, Lang
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [5] Generalized k-Labelsets Ensemble for Multi-Label and Cost-Sensitive Classification
    Lo, Hung-Yi
    Lin, Shou-De
    Wang, Hsin-Min
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (07) : 1679 - 1691
  • [6] Fast Random k-Labelsets for Large-Scale Multi-Label Classification
    Kimura, Keigo
    Kudo, Mineichi
    Sun, Lu
    Koujaku, Sadamori
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 438 - 443
  • [7] Progressive random k-labelsets for cost-sensitive multi-label classification
    Wu, Yu-Ping
    Lin, Hsuan-Tien
    [J]. MACHINE LEARNING, 2017, 106 (05) : 671 - 694
  • [8] Progressive random k-labelsets for cost-sensitive multi-label classification
    Yu-Ping Wu
    Hsuan-Tien Lin
    [J]. Machine Learning, 2017, 106 : 671 - 694
  • [9] k-Labelsets for Multimedia Classification with Global and Local Label Correlation
    Yan, Yan
    Li, Shining
    Zhang, Xiao
    Wang, Anyi
    Li, Zhigang
    Zhang, Jingyu
    [J]. MULTIMEDIA MODELING, MMM 2018, PT II, 2018, 10705 : 177 - 188
  • [10] Random k-Labelsets Method for Human Activity Recognition with Multi-Sensor Data in Smart Home
    Jethanandani, Manan
    Perumal, Thinagaran
    Sharma, Abhishek
    [J]. 2019 IEEE 16TH INDIA COUNCIL INTERNATIONAL CONFERENCE (IEEE INDICON 2019), 2019,