Estimating the Gauss-Markov Random Field Parameters for Remote Sensing Image Textures

被引:0
|
作者
Navarro, Rolando D., Jr. [1 ]
Magadia, Joselito C. [1 ]
Paringit, Enrico C. [1 ]
机构
[1] Univ Philippines Diliman, Quezon City, Philippines
来源
TENCON 2009 - 2009 IEEE REGION 10 CONFERENCE, VOLS 1-4 | 2009年
关键词
Gauss-Markov random fields; pseudo-likelihood estimation; interaction matrix coefficients; thematic classification; CLASSIFICATION; SEGMENTATION; MODEL;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Although there are some recent characterizations of Multivariate Gauss Markov-Random Field (MGMRF) models, these are limited to cases where the interaction matrix coefficients are modeled with some special form. We extend the modeling and parameter estimation for the interaction matrix coefficients for a general anisotropic MGMRF. Although the MGMRF is a natural generalization of its univariate counterpart, there are new problems which hold in the multivariate case but do not hold in the univariate case. The results show that in general, there is an improvement in the classification performance in the generalized model compared to competing MGMRF models.
引用
收藏
页码:581 / 586
页数:6
相关论文
共 50 条
  • [1] Applications of noncausal Gauss-Markov random field models in image and video processing
    Asif, Amir
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 145, 2007, 145 : 1 - 53
  • [2] PROBABILISTIC IMAGE PROCESSING BY EXTENDED GAUSS-MARKOV RANDOM FIELDS
    Tanaka, Kazuyuki
    Morin, Nicolas
    Yasuda, Muneki
    Titterington, D. M.
    2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 617 - +
  • [3] FAST IMAGE REGISTRATION WITH NON-STATIONARY GAUSS-MARKOV RANDOM FIELD TEMPLATES
    Ramamurthy, Karthikeyan Natesan
    Thiagarajan, Jayaraman J.
    Spanias, Andreas
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 185 - 188
  • [4] COMPOUND GAUSS-MARKOV RANDOM-FIELDS FOR IMAGE ESTIMATION
    JENG, FC
    WOODS, JW
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (03) : 683 - 697
  • [5] Multiresolution Gauss-Markov random field models for texture segmentation
    COMSAT Lab, Clarksburg, United States
    IEEE Trans Image Process, 2 (251-267):
  • [6] Multiresolution Gauss-Markov random field models for texture segmentation
    Krishnamachari, S
    Chellappa, R
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (02) : 251 - 267
  • [7] THE GAUSS-MARKOV THEOREM AND RANDOM REGRESSORS
    SHAFFER, JP
    AMERICAN STATISTICIAN, 1991, 45 (04): : 269 - 273
  • [8] HOMOGENEOUS GAUSS-MARKOV RANDOM FIELDS
    WONG, E
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (05): : 1625 - &
  • [9] COMPRESSED SENSING OF GAUSS-MARKOV RANDOM FIELDS WITH WIRELESS SENSOR NETWORKS
    Oka, Anand
    Lampe, Lutz
    2008 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2008, : 257 - 260
  • [10] Estimating Gaussian Markov random field parameters in a nonstationary framework:: Application to remote sensing imaging
    Descombes, X
    Sigelle, M
    Préteux, F
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, 8 (04) : 490 - 503