Genetic manipulation of non-ribosomal peptide synthetases to generate novel bioactive peptide products

被引:42
|
作者
Calcott, Mark J. [1 ]
Ackerley, David F. [1 ,2 ,3 ]
机构
[1] Victoria Univ Wellington, Sch Biol Sci, Wellington, New Zealand
[2] Victoria Univ Wellington, Ctr Biodiscovery, Wellington, New Zealand
[3] Univ Auckland, Sch Biol Sci, Maurice Wilkins Ctr Mol Biodiscovery, Auckland 1, New Zealand
关键词
Biosynthesis; Directed evolution; Domain substitution; Module swapping; Non-ribosomal peptide synthetases; Rational engineering; Secondary metabolite; ADENYLATION DOMAIN SPECIFICITY; DIRECTED EVOLUTION; PSEUDOMONAS-AERUGINOSA; SUBSTRATE-SPECIFICITY; NATURAL-PRODUCTS; RATIONAL DESIGN; CONFERRING CODE; IN-VIVO; ANTIBIOTICS; BIOSYNTHESIS;
D O I
10.1007/s10529-014-1642-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Non-ribosomal peptide synthetases (NRPS) are large modular enzymes that govern the synthesis of numerous biotechnologically relevant products. Their mode of action is frequently compared to an assembly line, in which each module acts in a semi-autonomous but coordinated manner to add a specific monomer to a growing peptide chain, unfettered by ribosomal constraints. The modular nature of these systems offers tantalising prospects for synthetic biology, wherein the assembly line is re-engineered at a genetic level to generate a specific or combinatorial modified product. However, despite some success stories, a "one size fits all" approach to NRPS synthetic biology remains elusive. This review examines both rational and random mutagenesis strategies that have been employed to modify NRPS function, in an attempt to highlight key points that should be considered when seeking to re-engineer an NRPS biosynthetic template.
引用
收藏
页码:2407 / 2416
页数:10
相关论文
共 50 条
  • [1] Genetic manipulation of non-ribosomal peptide synthetases to generate novel bioactive peptide products
    Mark J. Calcott
    David F. Ackerley
    Biotechnology Letters, 2014, 36 : 2407 - 2416
  • [2] Structural Dynamics of Non-Ribosomal Peptide Synthetases
    Singh, Jitendra
    Grant, Thomas D.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : A46 - A46
  • [3] ATPase activity of non-ribosomal peptide synthetases
    Pavela-Vrancic, M
    Dieckmann, R
    von Döhren, H
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2004, 1696 (01): : 83 - 91
  • [4] Non-ribosomal peptide synthetases for production of bioactive peptides with syringomycin synthetase as an example
    Acan, NL
    TOXICOGENOMICS AND PROTEOMICS, 2004, 356 : 125 - 133
  • [5] Transient Domain Interactions in Non-Ribosomal Peptide Synthetases
    Frueh, Dominique P.
    Nichols, Scott
    Mishra, Subrata
    Arthanari, Haribabu
    Koglin, Alexander
    Walsh, Christopher T.
    Wagner, Gerhard
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 17 - 17
  • [6] Transient Domain Interactions in Non-Ribosomal Peptide Synthetases
    Frueh, Dominique P.
    Nichols, Scott
    Mishra, Subrata
    Arthanari, Haribabu
    Koglin, Alexander
    Walsh, Christopher T.
    Wagner, Gerhard
    FASEB JOURNAL, 2011, 25
  • [7] Phylogenomic analysis of non-ribosomal peptide synthetases in the genus Aspergillus
    Cramer, Robert A., Jr.
    Stajich, Jason E.
    Yamanaka, Yvonne
    Dietrich, Fred S.
    Steinbach, William J.
    Perfect, John R.
    GENE, 2006, 383 : 24 - 32
  • [8] Diversity of non-ribosomal peptide synthetases genes in terrestrial streptomycetes
    Ozakin, S.
    Porsuk, I.
    Acer, I.
    Bali, B.
    Ince, E.
    MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY, 2014, 29 (03) : 144 - 153
  • [9] Diversity of non-ribosomal peptide synthetases genes in terrestrial streptomycetes
    S. Özakın
    İ Porsuk
    İ Acer
    B. Bali
    E. İnce
    Molecular Genetics, Microbiology and Virology, 2014, 29 : 144 - 153
  • [10] De novo design and engineering of non-ribosomal peptide synthetases
    Kenan A. J. Bozhüyük
    Florian Fleischhacker
    Annabell Linck
    Frank Wesche
    Andreas Tietze
    Claus-Peter Niesert
    Helge B. Bode
    Nature Chemistry, 2018, 10 (3) : 275 - 281