On Hyperbolic Metric and Invariant Beltrami Differentials for Rational Maps

被引:1
|
作者
Cabrera, Carlos [1 ]
Makienko, Peter [1 ]
机构
[1] UNAM, Inst Matemat, Unidad Cuernavaca, Cuernavaca, Morelos, Mexico
关键词
Rational maps; hyperbolic metric; Teichmuller space;
D O I
10.1007/s12220-017-9906-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a rational map R, we consider the complement of the postcritical set . In this paper we discuss the existence of invariant Beltrami differentials supported on an R invariant subset X of . Under some geometrical restrictions on X, we show the absence of invariant Beltrami differentials with support intersecting X. In particular, we show that if X has finite hyperbolic area, then X cannot support invariant Beltrami differentials except in the case where R is a LattSs map.
引用
收藏
页码:2346 / 2360
页数:15
相关论文
共 50 条
  • [1] On Hyperbolic Metric and Invariant Beltrami Differentials for Rational Maps
    Carlos Cabrera
    Peter Makienko
    The Journal of Geometric Analysis, 2018, 28 : 2346 - 2360
  • [2] Hyperbolic Equivariants of Rational Maps
    Jacobs, Kenneth
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (01) : 1 - 53
  • [3] A characterization of hyperbolic rational maps
    Cui, Guizhen
    Tan, Lei
    INVENTIONES MATHEMATICAE, 2011, 183 (03) : 451 - 516
  • [4] A characterization of hyperbolic rational maps
    Guizhen Cui
    Lei Tan
    Inventiones mathematicae, 2011, 183 : 451 - 516
  • [5] Invariant graphs of rational maps
    Cui, Guizhen
    Gao, Yan
    Zeng, Jinsong
    ADVANCES IN MATHEMATICS, 2022, 404
  • [6] Foliations invariant by rational maps
    Favre, Charles
    Pereira, Jorge Vitorio
    MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (3-4) : 753 - 770
  • [7] Foliations invariant by rational maps
    Charles Favre
    Jorge Vitório Pereira
    Mathematische Zeitschrift, 2011, 268 : 753 - 770
  • [8] Quasiconformal maps of bordered Riemann surfaces with L 2 Beltrami differentials
    Radnell, David
    Schippers, Eric
    Staubach, Wolfgang
    JOURNAL D ANALYSE MATHEMATIQUE, 2017, 132 : 229 - 245
  • [9] SUPER BELTRAMI DIFFERENTIALS
    TAKAMA, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 143 (01) : 149 - 173
  • [10] STATISTICS OF MULTIPLIERS FOR HYPERBOLIC RATIONAL MAPS
    Sharp, Richard
    Stylianou, Anastasios
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (03) : 1225 - 1241