Dynamic Simulation of Quantum Entanglement in Finite Quantum Mechanics: A Computer Algebra Approach

被引:1
|
作者
Kornyak, V. V. [1 ]
机构
[1] Joint Inst Nucl Res, Dubna 141980, Moscow Oblast, Russia
关键词
Quantum entanglement;
D O I
10.1134/S0361768821020067
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we investigate the behavior of quantum entanglement in the process of unitary evolution in constructive models of multicomponent quantum systems. Symmetry groups of quantum systems that admit the occurrence of geometric structures associated with quantum entanglement are described. Algorithms for dynamic simulation of quantum entanglement are based on methods of computer algebra and computational group theory. Some examples of practical computations are presented.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 50 条
  • [1] Dynamic Simulation of Quantum Entanglement in Finite Quantum Mechanics: A Computer Algebra Approach
    V. V. Kornyak
    [J]. Programming and Computer Software, 2021, 47 : 124 - 132
  • [3] Entanglement entropy and the simulation of Quantum Mechanics
    Latorre, Jose I.
    [J]. QUANTUM INFORMATION AND MANY BODY QUANTUM SYSTEMS, PROCEEDINGS, 2008, 8 : 117 - 127
  • [4] Experimental simulation of hybrid quantum systems and entanglement on a quantum computer
    Mazhandu, Farai
    Mathieson, Kayleigh
    Coleman, Christopher
    Bhattacharyya, Somnath
    [J]. APPLIED PHYSICS LETTERS, 2019, 115 (23)
  • [5] Entanglement in Quantum Process Algebra
    Yong Wang
    [J]. International Journal of Theoretical Physics, 2019, 58 : 3611 - 3626
  • [6] Entanglement in Quantum Process Algebra
    Wang, Yong
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (11) : 3611 - 3626
  • [7] Target space entanglement in quantum mechanics of fermions at finite temperature
    Temma Hanyuda
    Soichiro Mori
    Sotaro Sugishita
    [J]. Journal of High Energy Physics, 2022
  • [8] Target space entanglement in quantum mechanics of fermions at finite temperature
    Hanyuda, Temma
    Mori, Soichiro
    Sugishita, Sotaro
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [9] Revisiting Entanglement within the Bohmian Approach to Quantum Mechanics
    Zander, Claudia
    Plastino, Angel Ricardo
    [J]. ENTROPY, 2018, 20 (06)
  • [10] Geometric algebra and the causal approach to multiparticle quantum mechanics
    Somaroo, S
    Lasenby, A
    Doran, C
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (07) : 3327 - 3340