Numerical performance of penalty method for American option pricing

被引:11
|
作者
Zhang, K. [1 ]
Yang, X. Q. [2 ]
Wang, S. [3 ]
Teo, K. L. [4 ]
机构
[1] Shenzhen Univ, Sch Business, Dept Finance, Shenzhen 518060, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[3] Univ Western Australia, Sch Math & Stat, Perth, WA 6009, Australia
[4] Curtin Univ Technol, Dept Math & Stat, Perth, WA, Australia
来源
OPTIMIZATION METHODS & SOFTWARE | 2010年 / 25卷 / 05期
关键词
complementarity problem; option pricing; penalty method; finite volume method; FINITE-VOLUME METHOD; VALUATION;
D O I
10.1080/10556780903051930
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper is devoted to studying the numerical performance of a power penalty method for a linear parabolic complementarity problem arising from American option valuation. The penalized problem is a nonlinear parabolic partial differential equation (PDE). A fitted finite volume method and an implicit time-stepping scheme are used for, respectively, the spatial and time discretizations of the PDE. The rate of convergence of the penalty methods with respect to the penalty parameters is investigated both theoretically and numerically. The numerical robustness and computational effectiveness of the penalty method with respect to the market parameters are also studied and compared with those from an existing popular method, project successive over relaxation.
引用
收藏
页码:737 / 752
页数:16
相关论文
共 50 条
  • [1] Convergence analysis of a monotonic penalty method for American option pricing
    Zhang, Kai
    Yang, Xiaoqi
    Teo, Kok Lay
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (02) : 915 - 926
  • [2] A new numerical method on American option pricing
    顾永耕
    舒继武
    邓小铁
    郑纬民
    [J]. Science China(Information Sciences), 2002, (03) : 181 - 188
  • [3] A new numerical method on American option pricing
    Gu, YG
    Shu, JW
    Deng, XT
    Zheng, WM
    [J]. SCIENCE IN CHINA SERIES F, 2002, 45 (03): : 181 - 188
  • [4] A new numerical method on American option pricing
    Yonggeng Gu
    Jiwu Shu
    Xiaotie Deng
    Weimin Zheng
    [J]. Science in China Series F: Information Sciences, 2002, 45 (3): : 181 - 188
  • [5] Penalty method for indifference pricing of American option in a liquidity switching market
    Gyulov, Tihomir B.
    Koleva, Miglena N.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2022, 172 : 525 - 545
  • [6] Convergence analysis of power penalty method for American bond option pricing
    Zhang, K.
    Teo, K. L.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (04) : 1313 - 1323
  • [7] Convergence analysis of power penalty method for American bond option pricing
    K. Zhang
    K. L. Teo
    [J]. Journal of Global Optimization, 2013, 56 : 1313 - 1323
  • [8] A Simple Numerical Method for Pricing an American Put Option
    Kim, Beom Jin
    Ma, Yong-Ki
    Choe, Hi Jun
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [9] CONVERGENCE PROPERTY OF AN INTERIOR PENALTY APPROACH TO PRICING AMERICAN OPTION
    Zhang, Kai
    Wang, Song
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (02) : 435 - 447
  • [10] The Numerical Method for Solving the Problem of Pricing an American Put-Option
    Gileva, L.
    Shaydurov, V
    Efremov, A.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS 2020), 2020, 2302