ENTANGLEMENT OF APPROXIMATE QUANTUM STRATEGIES IN XOR GAMES

被引:0
|
作者
Ostrev, Dimiter [1 ]
Vidick, Thomas [2 ]
机构
[1] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] CALTECH, Dept Comp & Math Sci, 1200 E Calif Blvd,MC 305-16, Pasadena, CA 91125 USA
关键词
non-local XOR games; entanglement; nearly-optimal strategies;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We characterize the amount of entanglement that is sufficient to play any XOR game near-optimally. We show that for any XOR game G and epsilon > 0 there is an epsilon-optimal strategy for G using inverted right perpendicular epsilon(-1)inverted right perpendicular ebits of entanglement, irrespective of the number of questions in the game. By considering the family of XOR games CHSH(n) introduced by Slofstra (Jour. Math. Phys. 2011), we show that this bound is nearly tight: for any epsilon > 0 there is an n = Theta(epsilon(-1/5)) such that Omega(epsilon(-1/5)) ebits are required for any strategy achieving bias that is at least a multiplicative factor (1 - epsilon) from optimal in CHSH(n).
引用
下载
收藏
页码:617 / 631
页数:15
相关论文
共 50 条
  • [1] MULTIPARTITE ENTANGLEMENT IN XOR GAMES
    Briet, Jop
    Buhrman, Harry
    Lee, Troy
    Vidick, Thomas
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (3-4) : 334 - 360
  • [2] Multipartite entanglement in XOR games
    Briët, Jop
    Buhrman, Harry
    Lee, Troy
    Vidick, Thomas
    Quantum Information and Computation, 2013, 13 (3-4): : 0334 - 0360
  • [3] Quantum XOR Games
    Regev, Oded
    Vidick, Thomas
    2013 IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2013, : 144 - 155
  • [4] Quantum XOR Games
    Regev, Oded
    Vidick, Thomas
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2015, 7 (04)
  • [5] Connes' embedding problem and winning strategies for quantum XOR games
    Harris, Samuel J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)
  • [6] Quantum strategies for simple two-player XOR games
    Faleiro, Ricardo
    QUANTUM INFORMATION PROCESSING, 2020, 19 (08)
  • [7] Quantum strategies for simple two-player XOR games
    Ricardo Faleiro
    Quantum Information Processing, 2020, 19
  • [8] THE STRUCTURE OF NEARLY-OPTIMAL QUANTUM STRATEGIES FOR THE CHSH(n) XOR GAMES
    Ostrev, Dimiter
    QUANTUM INFORMATION & COMPUTATION, 2016, 16 (13-14) : 1191 - 1211
  • [9] Classical versus quantum communication in XOR games
    Junge, Marius
    Palazuelos, Carlos
    Villanueva, Ignacio
    QUANTUM INFORMATION PROCESSING, 2018, 17 (05)
  • [10] Classical versus quantum communication in XOR games
    Marius Junge
    Carlos Palazuelos
    Ignacio Villanueva
    Quantum Information Processing, 2018, 17