Learning State Representations for Query Optimization with Deep Reinforcement Learning

被引:52
|
作者
Ortiz, Jennifer [1 ]
Balazinska, Magdalena [1 ]
Gehrke, Johannes [2 ]
Keerthi, S. Sathiya [3 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Microsoft, Redmond, WA USA
[3] Criteo Res, Ann Arbor, MI USA
关键词
D O I
10.1145/3209889.3209890
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We explore the idea of using deep reinforcement learning for query optimization. The approach is to build queries incrementally by encoding properties of subqueries using a learned representation. In this paper, we focus specifically on the state representation problem and the formation of the state transition function. We show preliminary results and discuss how we can use the state representation to improve query optimization using reinforcement learning.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Regret Bounds for Learning State Representations in Reinforcement Learning
    Ortner, Ronald
    Pirotta, Matteo
    Fruit, Ronan
    Lazaric, Alessandro
    Maillard, Odalric-Ambrym
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [2] Ranked Deep Web Page Detection Using Reinforcement Learning and Query Optimization
    Madan, Kapil
    Bhatia, Rajesh K.
    [J]. INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2021, 17 (04) : 99 - 121
  • [3] Coral: federated query join order optimization based on deep reinforcement learning
    Rong Gu
    Yi Zhang
    Liangliang Yin
    Lingyi Song
    Wenjie Huang
    Chunfeng Yuan
    Zhaokang Wang
    Guanghui Zhu
    Yihua Huang
    [J]. World Wide Web, 2023, 26 : 3093 - 3118
  • [4] Coral: federated query join order optimization based on deep reinforcement learning
    Gu, Rong
    Zhang, Yi
    Yin, Liangliang
    Song, Lingyi
    Huang, Wenjie
    Yuan, Chunfeng
    Wang, Zhaokang
    Zhu, Guanghui
    Huang, Yihua
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05): : 3093 - 3118
  • [5] Learning Global Optimization by Deep Reinforcement Learning
    da Silva Filho, Moesio Wenceslau
    Barbosa, Gabriel A.
    Miranda, Pericles B. C.
    [J]. INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 417 - 433
  • [6] Information Optimization and Transferable State Abstractions in Deep Reinforcement Learning
    Gomez, Diego
    Quijano, Nicanor
    Giraldo, Luis Felipe
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4782 - 4793
  • [7] Deep Reinforcement Learning for Multiobjective Optimization
    Li, Kaiwen
    Zhang, Tao
    Wang, Rui
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (06) : 3103 - 3114
  • [8] Learning Markov State Abstractions for Deep Reinforcement Learning
    Allen, Cameron
    Parikh, Neev
    Gottesman, Omer
    Konidaris, George
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [9] Reinforcement learning for deep portfolio optimization
    Yan, Ruyu
    Jin, Jiafei
    Han, Kun
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (09): : 5176 - 5200
  • [10] STATE REPRESENTATION LEARNING FOR EFFECTIVE DEEP REINFORCEMENT LEARNING
    Zhao, Jian
    Zhou, Wengang
    Zhao, Tianyu
    Zhou, Yun
    Li, Houqiang
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,