Time-varying smooth transition autoregressive models

被引:121
|
作者
Lundbergh, S
Teräsvirta, T
van Dijk, D
机构
[1] Stockholm Sch Econ, Dept Econ & Stat, SE-11383 Stockholm, Sweden
[2] Erasmus Univ, Inst Econometr, NL-3000 DR Rotterdam, Netherlands
关键词
nonlinearity; structural change; time series model specification;
D O I
10.1198/073500102288618810
中图分类号
F [经济];
学科分类号
02 ;
摘要
Nonlinear regime-switching behavior and structural change are often perceived as competing alternatives to linearity. In this article we study the so-called time-varying smooth transition autoregressive (TV-STAR) model, which can be used both for describing simultaneous nonlinearity and structural change and for distinguishing between these features. Two modeling strategies for empirical specification of TV-STAR models are developed. Monte Carlo simulations show that neither of the two strategies dominates the other. A specific-to-general-to-specific procedure is best suited for obtaining a first impression of the importance of nonlinearity and/or structural change for a particular time series. A specific-to-general procedure is most useful in careful specification of a model with nonlinear and/or time-varying properties. An empirical application to a large dataset of U.S. macroeconomic time series illustrates the relative merits of both modeling strategies.
引用
收藏
页码:104 / 121
页数:18
相关论文
共 50 条
  • [1] Critical values for linearity tests in time-varying smooth transition autoregressive models when data are highly persistent
    Sandberg, Rickard
    [J]. ECONOMETRICS JOURNAL, 2008, 11 (03): : 638 - 647
  • [2] Time-varying linear autoregressive models for segmentation
    Florin, Charles
    Paragios, Nikos
    Funka-Lea, Gareth
    Williams, James
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 509 - +
  • [3] Stabilization of stationary and time-varying autoregressive models
    Juntunen, M
    Tervo, J
    Kaipio, JP
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2173 - 2176
  • [4] Time-varying vector autoregressive models with stochastic volatility
    Triantafyllopoulos, K.
    [J]. JOURNAL OF APPLIED STATISTICS, 2011, 38 (02) : 369 - 382
  • [5] A Tutorial on Estimating Time-Varying Vector Autoregressive Models
    Haslbeck, Jonas M. B.
    Bringmann, Laura F.
    Waldorp, Lourens J.
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2020, 56 (01) : 120 - 149
  • [6] Generalized feature extraction for time-varying autoregressive models
    Rajan, JJ
    Rayner, PJW
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (10) : 2498 - 2507
  • [7] Adaptive estimation of autoregressive models with time-varying variances
    Xu, Ke-Li
    Phillips, Peter C. B.
    [J]. JOURNAL OF ECONOMETRICS, 2008, 142 (01) : 265 - 280
  • [8] Stabilization of smoothness priors time-varying autoregressive models
    Juntunen, M
    Kaipio, JP
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2000, 19 (05) : 423 - 435
  • [9] Stabilization of smoothness priors time-varying autoregressive models
    M. Juntunen
    J. P. Kaipio
    [J]. Circuits, Systems and Signal Processing, 2000, 19 : 423 - 435
  • [10] Time-varying autoregressive (TVAR) models for multiple radar observations
    Abramovich, Yuri I.
    Spencer, Nicholas K.
    Turley, Michael D. E.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (04) : 1298 - 1311