Structure-activity relationships of semisynthetic mumbaistatin analogs

被引:17
|
作者
Lee, Taek Soon
Das, Abhirup
Khosla, Chaitan [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
关键词
polyketides; natural product biosynthesis; target-oriented synthesis; type II diabetes; mumbaistatin; glucose-6-phosphate translocase; diabetes; semisynthesis;
D O I
10.1016/j.bmc.2007.05.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mumbaistatin (1), a new anthraquinone natural product, is one of the most potent known inhibitors of hepatic glucose-6-phosphate translocase, an important target for the treatment of type II diabetes. Its availability, however, has been limited due to its extremely low yield from the natural source. Starting from DMAC (5, 3,8-dihydroxyanthraquinone-2-carboxylic acid), a structurally related polyketide product of engineered biosynthesis, we developed a facile semisynthetic method that afforded a variety of mumbaistatin analogs within five steps. This work was facilitated by the initial development of a DMAC overproduction system. In addition to reinforcing the biological significance of the anthraquinone moiety of mumbaistatin, several semisynthetic analogs were found to have low micromolar potency against the translocase in vitro. Two of them were also active in glucose release assays from primary hepatocytes. The synergistic combination of biosynthesis and synthesis is a promising avenue for the discovery of new bioactive substances. (c) 2007 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:5207 / 5218
页数:12
相关论文
共 50 条