A note on Sylvester's proof of discreteness of interior transmission eigenvalues

被引:6
|
作者
Kirsch, Andreas [1 ]
机构
[1] KIT, Dept Math, D-76131 Karlsruhe, Germany
关键词
D O I
10.1016/j.crma.2016.01.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It has been shown by Sylvester (2011) [10] that the set of interior transmission eigenvalues forms a discrete set if the contrast does not change its sign in a neighborhood of the boundary. In this short note, we give a more elementary proof of this fact using the classical inf-sup conditions of Babuska-Brezzi. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:377 / 382
页数:6
相关论文
共 50 条
  • [1] Discreteness of interior transmission eigenvalues revisited
    Hoai-Minh Nguyen
    Quoc-Hung Nguyen
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [2] Discreteness of interior transmission eigenvalues revisited
    Hoai-Minh Nguyen
    Quoc-Hung Nguyen
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
  • [3] DISCRETENESS OF THE EXTERIOR TRANSMISSION EIGENVALUES
    Sun, Meiman
    Yan, Guozheng
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (01) : 110 - 124
  • [4] ON THE DISCRETENESS OF TRANSMISSION EIGENVALUES FOR THE MAXWELL EQUATIONS
    Cakoni, Fioralba
    Hoai-Minh Nguyen
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (01) : 888 - 913
  • [5] Interior transmission eigenvalues of a rectangle
    Sleeman, B. D.
    Stocks, D. C.
    INVERSE PROBLEMS, 2016, 32 (02)
  • [6] A NOTE ON TRANSMISSION EIGENVALUES IN
    Cakoni, Fioralba
    Meng, Shixu
    Xiao, Jingni
    INVERSE PROBLEMS AND IMAGING, 2021, 15 (05) : 999 - 1014
  • [7] THE INTERIOR TRANSMISSION PROBLEM AND BOUNDS ON TRANSMISSION EIGENVALUES
    Hitrik, Michael
    Krupchyk, Katsiaryna
    Ola, Petri
    Paivarinta, Lassi
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (02) : 279 - 293
  • [8] COUNTING FUNCTION FOR INTERIOR TRANSMISSION EIGENVALUES
    Robbiano, Luc
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2016, 6 (01) : 167 - 183
  • [9] Asymptotics of the number of the interior transmission eigenvalues
    Petkov, Vesselin
    Vodev, Georgi
    JOURNAL OF SPECTRAL THEORY, 2017, 7 (01) : 1 - 31
  • [10] Bounds on positive interior transmission eigenvalues
    Lakshtanov, E.
    Vainberg, B.
    INVERSE PROBLEMS, 2012, 28 (10)