3D-printed polymers exhibit a strength size effect

被引:29
|
作者
Bell, Darren [1 ]
Siegmund, Thomas [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, 585 Purdue Mall, W Lafayette, IN 47907 USA
关键词
Strength; Size effect; 3D printing; LOAD SEPARATION; FRACTURE-MECHANICS; CONCRETE; TENSION; PARTS;
D O I
10.1016/j.addma.2018.04.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study is an investigation on the size dependence of strength of a 3D printed acrylic polymer. 3D printed beams are used in three-point bend fracture experiments. Three print modes of the PolyJet process are used to manufacture beams of dimensions commonly considered in 3D printed structures (1-5 mm). It is found that for that range of dimensions, the fracture response is in the nonlinear size-strength domain and specimens neither follow the limiting linear elastic fracture mechanics nor the strength criterion. Consequently, strength and toughness are size dependent. Moreover, a strong interaction between specimen dimensions and print layer thickness was found. A size threshold exists below which there appears to be an interaction between specimen dimensions and print layer thickness, and for specimens of dimension below that threshold exhibit a declining strength with size. From the present experiments, the size threshold is estimated to be 50 times the print layer thickness. The finding of a maximum strength relative to geometric dimensions should be accounted for in designing with 3D printed materials.
引用
收藏
页码:658 / 665
页数:8
相关论文
共 50 条
  • [1] The Effect of Size on the Mechanical Properties of 3D-Printed Polymers
    Sadaghian, Hamed
    Dadmand, Behrooz
    Pourbaba, Majid
    Jabbari, Soheil
    Yeon, Jung Heum
    SUSTAINABILITY, 2024, 16 (01)
  • [2] Effect of porous structure and pore size on mechanical strength of 3D-printed comby scaffolds
    Zhao, Hongxia
    Li, Lihua
    Ding, Shan
    Liu, Chenxing
    Ai, Jiaoyan
    MATERIALS LETTERS, 2018, 223 : 21 - 24
  • [3] Estimating Strength of 3D-Printed Polymers Based on the Appraisal of Available Methods
    Rafiee, Roham
    Amohaji, Hirad
    Khezma, Hedi
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [4] A Study on the Effect of Fiber Orientation on the Strength and Failure of 3D-Printed Carbon Fiber Reinforced Polymers
    Kokner, Yesim
    Delpierre, Arthur
    Couzis, Jason P.
    Ardebili, Mahmoud
    Delale, Feridun
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 4, 2023,
  • [5] 3D-printed polymers for biomedical applications
    Seppala, J.
    EXPRESS POLYMER LETTERS, 2016, 10 (10): : 788 - 788
  • [6] 3D-printed polymers for lightweight structures
    Donaldson, Laurie
    MATERIALS TODAY, 2020, 33 : 3 - 3
  • [7] Triple-shape memory effect in 3D-printed polymers
    Dai, L.
    Song, J.
    Qu, S.
    Xiao, R.
    EXPRESS POLYMER LETTERS, 2020, 14 (12) : 1116 - 1126
  • [8] IMPACT STRENGTH OF 3D-PRINTED POLYCARBONATE
    de Vries, Hans
    Engelen, Roy
    Janssen, Esther
    FACTA UNIVERSITATIS-SERIES ELECTRONICS AND ENERGETICS, 2020, 33 (01) : 105 - 117
  • [9] Time gap effect on bond strength of 3D-printed concrete
    Tay, Yi Wei Daniel
    Ting, Guan Heng Andrew
    Qian, Ye
    Panda, Biranchi
    He, Lewei
    Tan, Ming Jen
    VIRTUAL AND PHYSICAL PROTOTYPING, 2019, 14 (01) : 104 - 113
  • [10] Evaluating the effect of pore size for 3d-printed bone scaffolds
    Seehanam, Saran
    Khrueaduangkham, Suppakrit
    Sinthuvanich, Chomdao
    Sae-Ueng, Udom
    Srimaneepong, Viritpon
    Promoppatum, Patcharapit
    HELIYON, 2024, 10 (04)